--- title: Active Inference in Cognitive Science Learning Path type: learning_path status: stable created: 2024-03-15 complexity: advanced processing_priority: 1 tags: - active-inference - cognitive-science - psychology - behavior semantic_relations: - type: specializes links: [[active_inference_learning_path]] - type: relates links: - [[cognitive_architecture_learning_path]] - [[cognitive_psychology_learning_path]] - [[computational_psychiatry_learning_path]] --- # Active Inference in Cognitive Science Learning Path ## Overview This specialized path focuses on applying Active Inference to understand cognitive processes, behavior, and mental phenomena. It integrates psychological theory with computational modeling. ## Prerequisites ### 1. Cognitive Science Foundations (4 weeks) - Cognitive Psychology - Perception - Attention - Memory - Decision making - Behavioral Science - Learning theory - Motivation - Emotion - Social cognition - Experimental Methods - Research design - Data collection - Statistical analysis - Behavioral measures - Computational Theory - Information processing - Mental representations - Cognitive architectures - Neural computation ### 2. Technical Skills (2 weeks) - Research Tools - Python/R - Statistical packages - Experimental software - Data visualization ## Core Learning Path ### 1. Cognitive Modeling (4 weeks) #### Week 1-2: Mental State Inference ```python class CognitiveStateEstimator: def __init__(self, belief_dim: int, observation_dim: int): """Initialize cognitive state estimator.""" self.belief_model = BeliefUpdateModel(belief_dim) self.obs_model = ObservationModel(belief_dim, observation_dim) self.beliefs = torch.zeros(belief_dim) def update_beliefs(self, observation: torch.Tensor) -> torch.Tensor: """Update beliefs based on observation.""" # Generate prediction pred_obs = self.obs_model(self.beliefs) # Compute prediction error error = observation - pred_obs # Update beliefs self.beliefs = self.belief_model.update(self.beliefs, error) return self.beliefs ``` #### Week 3-4: Action Selection ```python class BehavioralController: def __init__(self, action_space: int, goal_space: int): """Initialize behavioral controller.""" self.policy = PolicyNetwork(action_space) self.value = ValueNetwork(goal_space) def select_action(self, beliefs: torch.Tensor, goals: torch.Tensor) -> torch.Tensor: """Select action using active inference.""" # Generate policies policies = self.policy.generate_policies(beliefs) # Evaluate expected free energy G = torch.zeros(len(policies)) for i, pi in enumerate(policies): future_beliefs = self.simulate_policy(beliefs, pi) G[i] = self.compute_expected_free_energy( future_beliefs, goals ) # Select optimal policy best_policy = policies[torch.argmin(G)] return best_policy[0] ``` ### 2. Cognitive Domains (6 weeks) #### Week 1-2: Perceptual Processing - Sensory Integration - Feature Extraction - Pattern Recognition - Attention Allocation #### Week 3-4: Decision Making - Value Computation - Risk Assessment - Temporal Planning - Social Decision Making #### Week 5-6: Learning and Memory - Skill Acquisition - Knowledge Formation - Memory Consolidation - Habit Learning ### 3. Applications (4 weeks) #### Week 1-2: Behavioral Tasks ```python class CognitiveBehaviorTask: def __init__(self, task_type: str, difficulty: float): """Initialize cognitive task.""" self.type = task_type self.difficulty = difficulty self.stimuli = self.generate_stimuli() def run_trial(self, agent: CognitiveAgent) -> Dict[str, Any]: """Run single trial of task.""" # Present stimulus observation = self.present_stimulus() # Get agent response response = agent.process_stimulus(observation) # Evaluate performance results = self.evaluate_response(response) return results ``` #### Week 3-4: Clinical Applications - Psychiatric Disorders - Behavioral Therapy - Cognitive Training - Intervention Design ### 4. Advanced Topics (4 weeks) #### Week 1-2: Social Cognition ```python class SocialCognitionModel: def __init__(self, n_agents: int, social_dim: int): """Initialize social cognition model.""" self.agents = [CognitiveAgent() for _ in range(n_agents)] self.social_space = SocialSpace(social_dim) def simulate_interaction(self, context: Dict[str, Any]) -> List[torch.Tensor]: """Simulate social interaction.""" # Initialize interaction states = [] for agent in self.agents: # Update beliefs about others social_obs = self.social_space.get_observations(agent) agent.update_social_beliefs(social_obs) # Generate social action action = agent.select_social_action(context) states.append(action) return states ``` #### Week 3-4: Metacognition - Self-monitoring - Confidence Estimation - Strategy Selection - Learning to Learn ## Projects ### Cognitive Projects 1. **Perceptual Tasks** - Visual Search - Pattern Recognition - Category Learning - Attention Tasks 2. **Decision Tasks** - Value-based Choice - Risk Assessment - Social Dilemmas - Sequential Planning ### Clinical Projects 1. **Disorder Modeling** - Anxiety - Depression - OCD - ADHD 2. **Intervention Design** - Cognitive Training - Behavioral Therapy - Treatment Planning - Outcome Prediction ## Assessment ### Knowledge Assessment 1. **Theoretical Understanding** - Cognitive Processes - Behavioral Principles - Clinical Applications - Research Methods 2. **Practical Skills** - Experimental Design - Data Analysis - Model Implementation - Result Interpretation ### Final Projects 1. **Research Project** - Theory Development - Experimental Design - Data Collection - Analysis 2. **Clinical Application** - Disorder Modeling - Treatment Design - Validation Study - Outcome Assessment ## Resources ### Academic Resources 1. **Research Papers** - Theoretical Papers - Empirical Studies - Review Articles - Clinical Studies 2. **Books** - Cognitive Science - Computational Modeling - Clinical Psychology - Research Methods ### Technical Resources 1. **Software Tools** - Experimental Software - Analysis Packages - Modeling Tools - Visualization Libraries 2. **Data Resources** - Behavioral Datasets - Clinical Data - Model Benchmarks - Analysis Scripts ## Next Steps ### Advanced Topics 1. [[computational_psychiatry_learning_path|Computational Psychiatry]] 2. [[social_cognition_learning_path|Social Cognition]] 3. [[metacognition_learning_path|Metacognition]] ### Research Directions 1. [[research_guides/cognitive_science|Cognitive Science Research]] 2. [[research_guides/clinical_psychology|Clinical Psychology Research]] 3. [[research_guides/computational_modeling|Computational Modeling Research]]