--- title: Active Inference Learning Path type: learning_path status: stable created: 2024-03-15 complexity: advanced processing_priority: 1 tags: - active-inference - free-energy-principle - cognitive-science - machine-learning semantic_relations: - type: foundation_for links: - [[predictive_processing_learning_path]] - [[cognitive_architecture_learning_path]] - type: implements links: - [[free_energy_principle_learning_path]] - [[variational_inference_learning_path]] - type: relates links: - [[dynamical_systems_learning_path]] - [[stochastic_processes_learning_path]] - [[information_theory_learning_path]] --- # Active Inference Learning Path ## Overview This learning path provides a comprehensive guide to understanding and implementing Active Inference, from mathematical foundations to practical applications. Active Inference is a unifying framework for understanding perception, learning, and action in biological and artificial systems. ## Prerequisites ### 1. Mathematics (4 weeks) - [[probability_theory_learning_path|Probability Theory]] - Probability spaces - Random variables - Conditional probability - Bayesian inference - [[information_theory_learning_path|Information Theory]] - Entropy - KL divergence - Mutual information - Free energy - [[optimization_theory_learning_path|Optimization Theory]] - Variational methods - Gradient descent - Lagrange multipliers - Optimal control - [[stochastic_processes_learning_path|Stochastic Processes]] - Markov processes - Diffusion processes - Stochastic differential equations - Path integrals ### 2. Programming (2 weeks) - Python Fundamentals - NumPy/SciPy - PyTorch/JAX - Object-oriented programming - Scientific computing - Software Engineering - Version control - Testing - Documentation - Best practices ## Core Learning Path ### 1. Theoretical Foundations (4 weeks) #### Week 1-2: Free Energy Principle - Variational Free Energy ```python def compute_free_energy(q_dist, p_dist, obs): """Compute variational free energy.""" expected_log_likelihood = compute_expected_ll(q_dist, p_dist, obs) kl_divergence = compute_kl(q_dist, p_dist) return -expected_log_likelihood + kl_divergence ``` - Markov Blankets - Self-organization - Information Geometry #### Week 3-4: Active Inference - Expected Free Energy ```python def compute_expected_free_energy(policy, model): """Compute expected free energy for policy.""" ambiguity = compute_ambiguity(policy, model) risk = compute_risk(policy, model) return ambiguity + risk ``` - Policy Selection - Precision Engineering - Message Passing ### 2. Implementation (6 weeks) #### Week 1-2: Core Components - Generative Models ```python class GenerativeModel: def __init__(self, hidden_dims: List[int], obs_dim: int): """Initialize generative model.""" self.hidden_states = [ torch.zeros(dim) for dim in hidden_dims ] self.obs_model = ObservationModel(hidden_dims[-1], obs_dim) self.trans_model = TransitionModel(hidden_dims) def generate(self, policy: torch.Tensor) -> torch.Tensor: """Generate observations under policy.""" states = self.propagate_states(policy) return self.obs_model(states) ``` - Variational Inference - Policy Networks - Precision Parameters #### Week 3-4: Agent Implementation - Perception ```python class ActiveInferenceAgent: def __init__(self, model: GenerativeModel, learning_rate: float = 0.01): """Initialize active inference agent.""" self.model = model self.lr = learning_rate self.beliefs = initialize_beliefs() def infer_states(self, obs: torch.Tensor) -> torch.Tensor: """Perform state inference.""" for _ in range(self.inference_steps): pred_error = self.compute_prediction_error(obs) self.update_beliefs(pred_error) return self.beliefs ``` - Action Selection - Learning - Memory #### Week 5-6: Advanced Features - Hierarchical Models - Active Learning - Meta-learning - Adaptive Behavior ### 3. Applications (4 weeks) #### Week 1-2: Cognitive Tasks - Perception Tasks ```python class PerceptionTask: def __init__(self, stimuli: torch.Tensor, categories: torch.Tensor): """Initialize perception task.""" self.stimuli = stimuli self.categories = categories def evaluate(self, agent: ActiveInferenceAgent) -> Dict[str, float]: """Evaluate agent performance.""" predictions = [] for stimulus in self.stimuli: belief = agent.infer_states(stimulus) pred = agent.model.predict_category(belief) predictions.append(pred) return compute_metrics(predictions, self.categories) ``` - Decision Making - Motor Control - Learning Tasks #### Week 3-4: Real-world Applications - Robotics - Neural Data Analysis - Clinical Applications - Social Systems ### 4. Advanced Topics (4 weeks) #### Week 1-2: Theoretical Extensions - Non-equilibrium Physics - Information Geometry - Quantum Extensions - Continuous Time #### Week 3-4: Research Frontiers - Mixed Models - Group Behavior - Development - Consciousness ## Projects ### Beginner Projects 1. **Simple Perception** - Binary classification - Feature extraction - Belief updating - Performance analysis 2. **Basic Control** - Pendulum balance - Target reaching - Simple navigation - Error correction ### Intermediate Projects 1. **Cognitive Tasks** - Visual recognition - Decision making - Sequence learning - Working memory 2. **Robotic Control** - Arm control - Object manipulation - Path planning - Multi-joint coordination ### Advanced Projects 1. **Complex Cognition** - Meta-learning - Hierarchical control - Active exploration - Social interaction 2. **Real-world Applications** - Medical diagnosis - Brain-machine interfaces - Autonomous systems - Clinical interventions ## Resources ### Reading Materials 1. **Core Papers** - Original formulations - Key extensions - Review papers - Applications 2. **Books** - Mathematical foundations - Cognitive science - Machine learning - Neuroscience ### Software Tools 1. **Libraries** - PyAI (Active Inference) - Torch/JAX implementations - Simulation environments - Analysis tools 2. **Environments** - OpenAI Gym - MuJoCo - Custom environments - Real-world interfaces ## Assessment ### Knowledge Checks 1. **Theoretical Understanding** - Mathematical derivations - Conceptual relationships - Framework applications - Design principles 2. **Implementation Skills** - Code review - Performance analysis - Debugging exercises - Optimization tasks ### Final Projects 1. **Research Implementation** - Novel contribution - Theoretical extension - Empirical validation - Documentation 2. **Practical Application** - Real-world problem - Solution design - Performance evaluation - Impact assessment ## Next Steps ### Advanced Paths 1. [[predictive_processing_learning_path|Predictive Processing]] 2. [[cognitive_architecture_learning_path|Cognitive Architecture]] 3. [[free_energy_principle_learning_path|Free Energy Principle]] ### Research Directions 1. [[research_guides/active_inference|Active Inference Research]] 2. [[research_guides/cognitive_science|Cognitive Science Research]] 3. [[research_guides/machine_learning|Machine Learning Research]]