# POMDP Structure Guide ## Overview This guide explains our modular approach to representing Active Inference POMDPs using Obsidian's knowledge management capabilities. ## Philosophy Our approach combines: 1. Machine-readable matrix specifications 2. Human-readable documentation 3. Bidirectional linking for relationships 4. Version control for evolution 5. Visualization capabilities ## Core Components ### Matrix Specifications Each POMDP matrix has its own specification: - [[A_matrix]] - Perception (observation mapping) - [[B_matrix]] - Transitions (dynamics) - [[C_matrix]] - Preferences (goals) - [[D_matrix]] - Priors (initial beliefs) - [[E_matrix]] - Affordances (policies) ### State Spaces Fundamental spaces are defined separately: - [[o_space]] - Observation space - [[s_space]] - Hidden state space - [[pi_space]] - Policy space ## Machine Readability ### YAML Frontmatter ```yaml --- type: matrix_spec id: unique_identifier matrix_type: perception created: timestamp modified: timestamp tags: [matrix, type, active-inference] related_spaces: [space1, space2] --- ``` ### Matrix Data Structure ```yaml matrix_data: format: numpy.ndarray dtype: float32 initialization: method storage: path/to/data.npy ``` ### Constraints ```yaml constraints: - mathematical_property - dimensional_requirement - probability_constraint ``` ## Knowledge Integration ### Bidirectional Links - Matrix ↔ Space relationships - Component dependencies - Implementation references ### Tag Taxonomy - #matrix - #state-space - #active-inference - #pomdp - #generative-model ## Computational Interface ### Matrix Operations ```python from src.models.matrices import MatrixLoader # Load matrix specification A = MatrixLoader.load("A_matrix") # Perform operations result = A.update(observation) ``` ### State Space Interface ```python from src.models.spaces import StateSpace # Initialize space s_space = StateSpace.from_spec("s_space") # Update beliefs s_space.update_belief(evidence) ``` ## Visualization Pipeline ### Matrix Visualization 1. Load specification from markdown 2. Read matrix data 3. Generate visualization 4. Export to desired format ### Network Visualization 1. Extract relationship graph 2. Apply layout algorithm 3. Render interactive view 4. Enable exploration ## Version Control ### Matrix Evolution - Track changes in specifications - Version matrix data - Document modifications - Maintain history ### Knowledge Base Updates - Link updates - Relationship changes - Documentation evolution - Implementation refinements ## Integration Examples ### Active Inference Implementation ```python class ActiveInferencePOMDP: def __init__(self, agent_spec: str): self.A = MatrixLoader.load("A_matrix") self.B = MatrixLoader.load("B_matrix") self.C = MatrixLoader.load("C_matrix") self.D = MatrixLoader.load("D_matrix") self.E = MatrixLoader.load("E_matrix") def infer_state(self, observation): """Perform state inference""" pass def select_policy(self): """Select optimal policy""" pass ``` ### Visualization Generation ```python class POMDPVisualizer: def __init__(self, agent_spec: str): self.spec = load_spec(agent_spec) def plot_matrices(self): """Generate matrix plots""" pass def plot_state_space(self): """Visualize state space""" pass ``` ## Best Practices ### Specification Writing 1. Clear structure 2. Complete metadata 3. Explicit constraints 4. Comprehensive documentation ### Knowledge Organization 1. Consistent naming 2. Meaningful links 3. Proper tagging 4. Regular updates ### Implementation 1. Type checking 2. Constraint validation 3. Error handling 4. Performance optimization ## Related Guides - [[matrix_operations]] - [[visualization_guide]] - [[implementation_guide]] - [[version_control]] ## References - [[active_inference_theory]] - [[pomdp_formalism]] - [[obsidian_usage]] - [[git_workflow]]