--- title: Research Guide type: guide status: draft created: 2024-02-12 tags: - research - guide - methodology semantic_relations: - type: implements links: [[documentation_standards]] - type: relates links: - [[machine_learning]] - [[ai_validation_framework]] --- # Research Guide ## Overview This guide outlines research methodologies, best practices, and workflows for conducting research in cognitive modeling. ## Research Areas ### Core Areas 1. Active Inference - Free energy principle - Belief updating - Action selection - See [[knowledge_base/cognitive/active_inference]] 2. Predictive Processing - Hierarchical prediction - Error minimization - Precision weighting - See [[knowledge_base/cognitive/predictive_processing]] 3. Cognitive Architecture - Memory systems - Learning mechanisms - Decision making - See [[knowledge_base/cognitive/cognitive_architecture]] ## Research Methodology ### Experimental Design 1. Hypothesis Formation ```python class ResearchHypothesis: def __init__(self): self.theory = Theory() self.predictions = Predictions() self.variables = Variables() ``` 2. Experimental Setup ```python class Experiment: def __init__(self): self.conditions = Conditions() self.controls = Controls() self.measures = Measures() ``` 3. Data Collection ```python class DataCollection: def __init__(self): self.sensors = Sensors() self.loggers = Loggers() self.storage = Storage() ``` ### Analysis Methods 1. Statistical Analysis - Hypothesis testing - Effect size calculation - Power analysis - See [[knowledge_base/mathematics/statistical_analysis]] 2. Model Comparison - Parameter estimation - Model selection - Cross-validation - See [[knowledge_base/mathematics/model_comparison]] 3. Performance Metrics - Accuracy measures - Efficiency metrics - Robustness tests - See [[docs/concepts/quality_metrics]] ## Research Workflow ### Planning Phase 1. Literature Review - Search strategies - Paper organization - Citation management - See [[docs/guides/literature_review]] 2. Research Design - Hypothesis development - Method selection - Variable control - See [[docs/guides/research_design]] 3. Protocol Development - Experimental procedures - Data collection - Analysis plans - See [[docs/guides/research_protocol]] ### Execution Phase 1. Data Collection ```python def collect_data(): """Collect experimental data.""" experiment = Experiment() data = experiment.run() return data ``` 2. Analysis ```python def analyze_data(data): """Analyze experimental data.""" analysis = Analysis() results = analysis.process(data) return results ``` 3. Validation ```python def validate_results(results): """Validate experimental results.""" validation = Validation() metrics = validation.check(results) return metrics ``` ### Documentation Phase 1. Results Documentation - Data organization - Analysis documentation - Figure generation - See [[docs/guides/results_documentation]] 2. Paper Writing - Structure - Style guide - Citation format - See [[docs/guides/paper_writing]] 3. Code Documentation - Implementation details - Usage examples - API documentation - See [[docs/guides/code_documentation]] ## Best Practices ### Research Standards 1. Reproducibility 2. Transparency 3. Rigor 4. Ethics ### Code Standards 1. Version control 2. Documentation 3. Testing 4. Sharing ### Documentation Standards 1. Clear writing 2. Complete methods 3. Accessible data 4. Open source ## Tools and Resources ### Research Tools 1. Literature Management - Reference managers - Paper organizers - Note-taking tools 2. Data Analysis - Statistical packages - Visualization tools - Analysis frameworks 3. Documentation - LaTeX templates - Figure tools - Documentation generators ### Computing Resources 1. Local Resources - Development environment - Testing setup - Data storage 2. Cloud Resources - Compute clusters - Storage systems - Collaboration tools ## Publication Process ### Paper Preparation 1. Writing guidelines 2. Figure preparation 3. Code packaging 4. Data organization ### Submission Process 1. Journal selection 2. Paper formatting 3. Code submission 4. Data sharing ### Review Process 1. Response strategies 2. Revision management 3. Rebuttal writing 4. Final submission ## Collaboration ### Team Coordination 1. Task management 2. Code sharing 3. Documentation 4. Communication ### External Collaboration 1. Data sharing 2. Code distribution 3. Knowledge transfer 4. Publication coordination ## Related Documentation - [[docs/guides/machine_learning]] - [[docs/guides/ai_validation_framework]] - [[docs/guides/documentation_standards]] - [[docs/guides/code_documentation]]