# AI Semantic Processing Guide --- title: AI Semantic Processing Guide type: guide status: stable created: 2024-02-06 tags: - semantic - embeddings - ai - processing complexity: advanced processing_priority: 1 semantic_relations: - type: implements links: [[machine_readability]] - type: extends links: [[knowledge_organization]] embeddings: model: sentence-transformers/all-mpnet-base-v2 dimensions: 768 --- ## Overview This guide defines semantic processing standards and embedding strategies for hyper-intelligent agents to effectively process and understand the knowledge base. ## Semantic Processing Framework ### Text Embeddings ```python # @embedding_specification embedding_config = { "models": { "text": "sentence-transformers/all-mpnet-base-v2", "code": "microsoft/codebert-base", "graph": "knowledge-graph-bert" }, "dimensions": { "text": 768, "code": 768, "graph": 512 }, "pooling": "mean", "normalization": "l2" } ``` ### Semantic Markers ```yaml semantic_markers: concept: prefix: "#CONCEPT:" weight: 1.0 embedding_type: "text" implementation: prefix: "#IMPL:" weight: 0.8 embedding_type: "code" relationship: prefix: "#REL:" weight: 0.9 embedding_type: "graph" ``` ## Knowledge Graph Integration ### Graph Structure ```python # @graph_specification class KnowledgeGraphNode: """ Knowledge graph node with semantic embeddings """ def __init__(self): self.embeddings = { "text": np.ndarray, # Text embedding "code": np.ndarray, # Code embedding "graph": np.ndarray # Graph structure embedding } self.relationships = [] # Typed edges self.metadata = {} # Node metadata ``` ### Relationship Types ```yaml relationship_types: hierarchical: - is_a: 0.9 # Type hierarchy - part_of: 0.8 # Composition - implements: 0.7 # Implementation semantic: - similar_to: 0.6 # Semantic similarity - related_to: 0.5 # General relation - references: 0.4 # Reference relation temporal: - precedes: 0.8 # Temporal ordering - depends_on: 0.7 # Dependency - evolves_to: 0.6 # Evolution ``` ## Processing Instructions ### Embedding Generation ```python # @embedding_generation def generate_embeddings(content: str, type: str) -> dict: """ Generate embeddings for content Processing steps: 1. Preprocess content based on type 2. Select appropriate model 3. Generate embeddings 4. Post-process and validate """ pass ``` ### Semantic Analysis ```python # @semantic_analysis def analyze_semantics(node: KnowledgeGraphNode) -> dict: """ Analyze semantic content Analysis steps: 1. Extract key concepts 2. Identify relationships 3. Compute similarities 4. Generate insights """ pass ``` ## Query Processing ### Semantic Search ```python # @semantic_search def semantic_search(query: str, context: dict) -> list: """ Semantic search implementation Search process: 1. Embed query 2. Compute similarities 3. Filter by context 4. Rank results """ pass ``` ### Relationship Inference ```python # @relationship_inference def infer_relationships(source: KnowledgeGraphNode, target: KnowledgeGraphNode) -> list: """ Infer relationships between nodes Inference steps: 1. Compare embeddings 2. Analyze context 3. Apply inference rules 4. Validate relationships """ pass ``` ## Processing Pipeline ### Document Processing ```mermaid graph TD A[Raw Document] --> B[Text Extraction] B --> C[Semantic Parsing] C --> D[Embedding Generation] D --> E[Graph Integration] E --> F[Validation] ``` ### Query Processing ```mermaid graph LR A[Query] --> B[Query Embedding] B --> C[Similarity Search] C --> D[Context Analysis] D --> E[Result Ranking] ``` ## Optimization Guidelines ### Embedding Optimization ```python # @embedding_optimization optimization_config = { "caching": { "strategy": "least_recently_used", "max_size": "10GB", "ttl": "24h" }, "computation": { "batch_size": 32, "precision": "float16", "device": "cuda" }, "storage": { "format": "memory_mapped", "compression": "lz4", "indexing": "faiss" } } ``` ### Performance Tuning ```yaml performance_config: embedding_generation: batch_size: 32 max_length: 512 truncation: true similarity_search: index_type: "IVFFlat" nprobe: 16 metric: "cosine" graph_operations: max_depth: 3 beam_width: 5 pruning_threshold: 0.5 ``` ## Validation Framework ### Quality Metrics ```python # @quality_metrics def compute_quality_metrics(embeddings: dict) -> dict: """ Compute quality metrics for embeddings Metrics: 1. Coverage 2. Consistency 3. Coherence 4. Discriminative power """ return { "coverage": 0.95, "consistency": 0.92, "coherence": 0.88, "discrimination": 0.90 } ``` ### Validation Rules ```python # @validation_rules validation_config = { "embeddings": { "dimension_check": True, "norm_check": True, "coverage_threshold": 0.9 }, "relationships": { "symmetry_check": True, "transitivity_check": True, "cycle_detection": True }, "graph": { "connectivity_check": True, "consistency_check": True, "completeness_check": True } } ``` ## Integration Examples ### Knowledge Base Integration ```python # Example of knowledge base integration from cognitive_system import SemanticProcessor processor = SemanticProcessor(config=embedding_config) # Process document doc_embeddings = processor.process_document( content=document, type="concept", context={"domain": "cognitive_modeling"} ) # Update knowledge graph graph.add_node( embeddings=doc_embeddings, relationships=inferred_relationships, metadata=document_metadata ) ``` ### Query Integration ```python # Example of semantic query results = processor.semantic_search( query="active inference implementation", filters={ "type": "implementation", "status": "stable", "complexity": ["intermediate", "advanced"] }, ranking={ "relevance": 0.7, "recency": 0.3 } ) ``` ## Related Documentation - [[ai_documentation_style]] - [[knowledge_graph_structure]] - [[embedding_framework]] - [[semantic_search]] ## References - [[embedding_techniques]] - [[semantic_processing]] - [[graph_algorithms]] - [[optimization_strategies]]