--- title: Simulation Guide type: guide status: draft created: 2024-02-12 tags: - simulation - modeling - framework semantic_relations: - type: implements links: [[model_implementation]] - type: relates links: - [[implementation_guides]] - [[ai_validation_framework]] --- # Simulation Framework Guide ## Overview This guide provides comprehensive documentation for running simulations in the cognitive modeling framework. It covers simulation setup, execution, analysis, and visualization. ## Simulation Components ### Core Elements 1. Model Configuration - Parameter settings - Initial conditions - Environment setup - Agent definitions 2. Execution Pipeline - Simulation steps - State updates - Event handling - Data collection 3. Analysis Tools - Data processing - Statistical analysis - Performance metrics - Result validation ### Configuration ```yaml simulation: name: cognitive_simulation duration: 1000 # timesteps agents: 10 environment: type: dynamic dimensions: [100, 100] parameters: learning_rate: 0.01 noise_level: 0.1 update_interval: 5 ``` ## Running Simulations ### Basic Usage ```python from cognitive.simulation import Simulator # Create simulator sim = Simulator(config_path="config.yaml") # Run simulation results = sim.run() # Analyze results analysis = sim.analyze(results) # Visualize sim.visualize(analysis) ``` ### Advanced Features 1. Batch Processing ```python # Run multiple simulations batch_results = sim.run_batch( num_runs=10, parallel=True ) ``` 2. Parameter Sweeps ```python # Test different parameters param_results = sim.parameter_sweep( parameter="learning_rate", values=[0.01, 0.05, 0.1] ) ``` 3. Custom Callbacks ```python # Add custom monitoring @sim.on_step def monitor_state(state): log_metrics(state) ``` ## Analysis Tools ### Data Processing - Time series analysis - State space analysis - Agent behavior analysis - Environment dynamics ### Visualization - State trajectories - Agent interactions - Performance metrics - Network dynamics ### Metrics - Convergence rates - Stability measures - Efficiency metrics - Error analysis ## Best Practices ### Performance - Use vectorized operations - Enable parallel processing - Optimize memory usage - Profile critical sections ### Reproducibility - Set random seeds - Version configurations - Document parameters - Archive results ### Validation - Unit test components - Verify constraints - Check conservation laws - Validate outputs ## Advanced Topics ### Custom Models - Extending base classes - Adding new behaviors - Custom environments - Specialized metrics ### Distributed Simulation - Multi-node execution - Load balancing - Data synchronization - Result aggregation ### Real-time Analysis - Live monitoring - Interactive visualization - Dynamic adjustment - Event handling ## Integration Points ### Data Pipeline - Input preprocessing - Result postprocessing - Data storage - Export formats ### External Tools - Visualization libraries - Analysis packages - Storage backends - Monitoring systems ## Related Documentation - [[model_implementation]] - [[implementation_guides]] - [[ai_validation_framework]]