--- title: Unit Testing Guide type: guide status: draft created: 2024-02-12 tags: - testing - development - quality semantic_relations: - type: implements links: [[ai_validation_framework]] - type: relates links: - [[implementation_guides]] - [[model_implementation]] --- # Unit Testing Guide ## Overview This guide provides comprehensive instructions for unit testing in the cognitive modeling framework. It covers best practices, testing patterns, and validation approaches. ## Testing Philosophy ### Core Principles - Test behavior, not implementation - One assertion per test - Keep tests simple and readable - Test edge cases and error conditions - Maintain test independence ### Test Types 1. Unit Tests - Individual component testing - Function-level validation - Class behavior verification 2. Integration Tests - Component interaction testing - System integration validation - End-to-end workflows 3. Property Tests - Invariant verification - Property-based testing - Randomized input testing ## Testing Structure ### Directory Organization ``` tests/ ├── unit/ # Unit tests ├── integration/ # Integration tests ├── property/ # Property-based tests └── fixtures/ # Test data and fixtures ``` ### File Naming - Test files: `test_*.py` - Test classes: `Test*` - Test methods: `test_*` ## Writing Tests ### Basic Test Structure ```python def test_function_name(): # Arrange input_data = prepare_test_data() # Act result = function_under_test(input_data) # Assert assert result == expected_output ``` ### Test Fixtures ```python @pytest.fixture def sample_model(): """Create a sample model for testing.""" return Model(params) ``` ### Parameterized Tests ```python @pytest.mark.parametrize("input,expected", [ (value1, result1), (value2, result2) ]) def test_parameterized(input, expected): assert function(input) == expected ``` ## Testing Patterns ### Model Testing - Test model initialization - Verify state transitions - Validate output distributions - Check error handling ### Algorithm Testing - Test convergence properties - Verify numerical stability - Check optimization behavior - Validate against known solutions ### Data Structure Testing - Test data integrity - Verify structure constraints - Check serialization - Validate transformations ## Best Practices ### Code Coverage - Aim for high test coverage - Focus on critical paths - Test edge cases - Cover error conditions ### Test Maintenance - Keep tests up to date - Refactor when needed - Document test purpose - Review test quality ### Performance - Use appropriate fixtures - Minimize test duration - Profile slow tests - Optimize test data ## Tools and Libraries ### Testing Framework - pytest for test execution - pytest-cov for coverage - pytest-benchmark for performance - pytest-mock for mocking ### Assertion Libraries - pytest assertions - numpy.testing - pandas.testing - torch.testing ### Mocking - unittest.mock - pytest-mock - responses for HTTP - moto for AWS ## Continuous Integration ### CI Pipeline 1. Run unit tests 2. Check coverage 3. Run integration tests 4. Generate reports ### Quality Gates - Minimum coverage: 80% - All tests must pass - No critical issues - Performance thresholds ## Related Documentation - [[ai_validation_framework]] - [[implementation_guides]] - [[model_implementation]]