# Documentation Roadmap --- title: Documentation Roadmap type: roadmap status: stable created: 2024-02-06 tags: - roadmap - planning - documentation - maintenance semantic_relations: - type: implements links: [[documentation_standards]] - type: relates links: - [[knowledge_organization]] - [[ai_documentation_style]] - [[content_management]] --- ## Overview This roadmap outlines the strategic direction for maintaining and enhancing the Cognitive Modeling documentation framework. It provides a structured approach to documentation development, maintenance, and evolution. ## Current Documentation Structure ### Core Documentation ``` docs/ ├── guides/ # Implementation guides and tutorials ├── concepts/ # Core theoretical concepts ├── api/ # API reference documentation ├── templates/ # Documentation templates ├── research/ # Research documentation ├── tools/ # Development tools documentation └── examples/ # Usage examples ``` ## Documentation Standards ### 1. File Organization - Follow [[ai_file_organization]] for consistent structure - Implement [[naming_conventions]] for all files - Maintain [[linking_completeness]] across documents ### 2. Content Management - Apply [[content_management]] guidelines - Follow [[ai_documentation_style]] for formatting - Ensure [[machine_readability]] for AI processing ### 3. Quality Assurance - Regular validation using [[ai_validation_framework]] - Link integrity checks via [[linking_validation]] - Content analysis through [[ai_semantic_processing]] ## Maintenance Schedule ### Daily Tasks - Monitor and fix broken links - Update documentation for new code changes - Review and address documentation issues ### Weekly Tasks - Validate documentation completeness - Update examples with new use cases - Review and enhance API documentation ### Monthly Tasks - Comprehensive documentation review - Update roadmap and priorities - Enhance machine-readable features - Integrate new documentation tools ## Enhancement Priorities ### 1. Content Quality - [ ] Enhance semantic relationships between documents - [ ] Improve code example coverage - [ ] Expand theoretical foundations documentation - [ ] Add more interactive examples ### 2. Technical Infrastructure - [ ] Implement automated documentation testing - [ ] Enhance documentation generation tools - [ ] Improve search and discovery features - [ ] Develop documentation analytics ### 3. User Experience - [ ] Create interactive documentation guides - [ ] Enhance navigation and cross-referencing - [ ] Improve documentation accessibility - [ ] Add more visual documentation elements ## Implementation Timeline ### Q1 2024 1. Documentation Framework Enhancement - Improve semantic linking - Enhance validation tools - Update style guidelines 2. Content Development - Expand core concepts - Add advanced tutorials - Create video documentation ### Q2 2024 1. Technical Infrastructure - Automated testing - Enhanced search - Analytics dashboard 2. User Experience - Interactive guides - Visual documentation - Accessibility improvements ## Validation Framework ### 1. Documentation Quality ```python quality_metrics = { "completeness": { "required_sections": 1.0, # All required sections present "optional_sections": 0.8, # 80% optional sections covered "code_examples": 0.9 # 90% code example coverage }, "accuracy": { "technical_accuracy": 1.0, # Technical content accuracy "code_correctness": 1.0, # Code example correctness "link_validity": 0.95 # Link integrity }, "readability": { "clarity": 0.9, # Content clarity "structure": 0.95, # Document structure "formatting": 1.0 # Formatting consistency } } ``` ### 2. Machine Readability ```python machine_metrics = { "semantic_markup": { "metadata_completeness": 1.0, "relationship_clarity": 0.9, "processing_hooks": 0.85 }, "ai_processing": { "parse_success": 0.95, "context_preservation": 0.9, "knowledge_integration": 0.85 } } ``` ## Integration Points ### 1. Development Workflow - Integration with code review process - Documentation-driven development - Automated documentation updates ### 2. Research Integration - Research paper documentation - Experiment documentation - Results documentation ### 3. Educational Resources - Tutorial development - Learning path creation - Interactive examples ## Best Practices ### 1. Documentation Development - Start with concept documentation - Follow with implementation guides - Include practical examples - Add validation tests ### 2. Maintenance - Regular review cycles - Version control integration - Automated validation - User feedback integration ### 3. Evolution - Continuous improvement - Technology adaptation - User needs assessment - Documentation metrics ## Success Metrics ### 1. Documentation Coverage - 100% API documentation - 90% code example coverage - 95% concept documentation - 85% advanced topics ### 2. Quality Metrics - 95% documentation accuracy - 90% user satisfaction - 85% automated test coverage - 80% search effectiveness ### 3. Usage Metrics - Documentation access rates - Search success rates - User engagement levels - Feedback incorporation ## Related Documentation - [[documentation_standards]] - [[ai_documentation_style]] - [[content_management]] - [[validation_framework]] ## References - [[theoretical_foundations]] - [[machine_readability]] - [[implementation_patterns]] - [[quality_metrics]]