# Knowledge Organization Guide --- title: Knowledge Organization Guide type: concept status: stable created: 2024-02-06 tags: - organization - knowledge - structure - management semantic_relations: - type: implements links: [[documentation_standards]] - type: relates links: - [[theoretical_foundations]] - [[machine_readability]] - [[linking_completeness]] --- ## Overview This guide defines the principles and practices for organizing knowledge within our cognitive modeling framework, ensuring efficient information retrieval, maintenance, and evolution. ## Knowledge Structure ### 1. Hierarchical Organization ```python # @knowledge_hierarchy knowledge_tree = { "concepts": { "theoretical": ["[[theoretical_foundations]]", "[[cognitive_phenomena]]"], "computational": ["[[active_inference]]", "[[predictive_processing]]"], "implementation": ["[[implementation_patterns]]", "[[code_organization]]"] }, "documentation": { "guides": ["[[documentation_standards]]", "[[api_documentation]]"], "references": ["[[api_reference]]", "[[package_documentation]]"], "examples": ["[[example_writing]]", "[[integration_examples]]"] }, "validation": { "frameworks": ["[[validation_framework]]", "[[quality_metrics]]"], "tools": ["[[validation_tools]]", "[[analysis_tools]]"], "reports": ["[[validation_reports]]", "[[performance_metrics]]"] } } ``` ### 2. Network Structure See [[linking_patterns]] for detailed linking guidelines. #### Core Relationships ```mermaid graph TD A[Concepts] --> B[Implementations] B --> C[Validation] C --> D[Documentation] E[Theory] --> F[Practice] F --> G[Testing] G --> H[Integration] ``` #### Knowledge Flow ```mermaid graph LR A[Research] --> B[Development] B --> C[Documentation] C --> D[Validation] D --> E[Integration] ``` ## Documentation Components ### 1. Core Documentation See [[documentation_standards]] for detailed guidelines. ```python # @doc_components documentation_structure = { "theoretical": { "concepts": "[[theoretical_foundations]]", "principles": "[[cognitive_phenomena]]", "architecture": "[[model_architecture]]" }, "practical": { "implementation": "[[implementation_guide]]", "examples": "[[example_writing]]", "validation": "[[validation_framework]]" }, "reference": { "api": "[[api_reference]]", "package": "[[package_documentation]]", "tools": "[[tool_documentation]]" } } ``` ### 2. Metadata Structure See [[machine_readability]] for implementation details. ```yaml # @metadata_structure metadata: required: - title - type - status - created - tags optional: - complexity - dependencies - related_docs semantic: - relationships - implementations - validations ``` ### 3. Link Types See [[linking_completeness]] for comprehensive linking patterns. ```python # @link_types link_categories = { "hierarchical": { "parent_child": "Direct hierarchy", "dependency": "Required knowledge", "implementation": "Concrete realization" }, "semantic": { "related": "Conceptual relationship", "similar": "Similar concepts", "contrasts": "Contrasting concepts" }, "temporal": { "precedes": "Temporal ordering", "evolves_to": "Evolution path", "replaces": "Replacement relationship" } } ``` ## Organization Principles ### 1. Information Architecture ```python # @info_architecture class InformationArchitecture: """ Core information architecture. See [[ai_documentation_style]] for guidelines. """ def __init__(self): self.structure = KnowledgeStructure() self.indexer = ContentIndexer() self.validator = StructureValidator() def organize_content(self, content: Content) -> OrganizedContent: """ Organize content according to guidelines. See [[documentation_standards]] for rules. """ # Implementation pass ``` ### 2. Content Management ```python # @content_management class ContentManager: """ Content management system. See [[content_management]] for details. """ def __init__(self): self.repository = ContentRepository() self.validator = ContentValidator() self.indexer = SearchIndexer() def process_content(self, content: Content) -> ProcessedContent: """ Process and validate content. See [[validation_framework]] for rules. """ # Implementation pass ``` ## Implementation Guidelines ### 1. File Organization ```python # @file_organization directory_structure = { "docs": { "concepts": "Theoretical concepts", "guides": "Implementation guides", "api": "API documentation", "examples": "Usage examples" }, "src": { "models": "Core implementations", "utils": "Utility functions", "tools": "Development tools" }, "tests": { "unit": "Unit tests", "integration": "Integration tests", "validation": "Validation tests" } } ``` ### 2. Naming Conventions See [[naming_conventions]] for detailed rules. ```python # @naming_rules naming_patterns = { "files": "{category}_{name}_{type}.md", "sections": "## {Category} {Name}", "links": "[[{category}/{name}]]", "code": "{category}_{name}_{version}" } ``` ## Quality Assurance ### 1. Structure Validation See [[validation_framework]] for implementation. ```python # @structure_validation validation_criteria = { "organization": { "hierarchy_depth": (2, 5), # Min/max depth "file_structure": 0.95, # Structure compliance "naming_compliance": 1.0 # Naming compliance }, "relationships": { "link_coverage": 0.9, # Link coverage "bidirectional": 1.0, # Bidirectional compliance "semantic_validity": 0.95 # Semantic compliance } } ``` ### 2. Content Quality See [[quality_metrics]] for detailed metrics. ```python # @quality_checks quality_requirements = { "completeness": { "required_sections": 1.0, # All required sections "optional_sections": 0.8, # 80% optional sections "metadata_fields": 1.0 # All required metadata }, "consistency": { "style_compliance": 0.95, # Style guide compliance "terminology": 1.0, # Terminology consistency "formatting": 1.0 # Format compliance } } ``` ## Maintenance Guidelines ### 1. Regular Updates - Review content periodically - Update outdated information - Maintain link integrity - Validate structure ### 2. Version Control - Follow [[git_workflow]] - Maintain [[changelog]] - Update [[version_tags]] - Document migrations ### 3. Quality Control - Run [[validation_tools]] - Check [[quality_metrics]] - Review [[linking_validation]] - Monitor [[performance_metrics]] ## Best Practices ### 1. Documentation - Follow [[documentation_standards]] - Use [[ai_documentation_style]] - Implement [[linking_patterns]] - Maintain [[linking_completeness]] ### 2. Organization - Use clear hierarchy - Maintain relationships - Follow naming conventions - Ensure accessibility ### 3. Validation - Regular validation - Quality checks - Link verification - Structure assessment ## Related Documentation - [[documentation_standards]] - [[ai_documentation_style]] - [[linking_completeness]] - [[validation_framework]] ## References - [[theoretical_foundations]] - [[machine_readability]] - [[implementation_patterns]] - [[quality_metrics]]