--- title: Implementing Active Inference Agents type: guide status: stable created: 2024-02-07 tags: - active_inference - implementation - guide semantic_relations: - type: implements links: [[knowledge_base/cognitive/active_inference]] - type: relates links: - [[knowledge_base/mathematics/free_energy_theory]] - [[knowledge_base/agents/GenericPOMDP/README]] --- # Implementing Active Inference Agents ## Overview This guide provides a comprehensive approach to implementing active inference agents, from basic principles to advanced features. We'll cover the theoretical foundations, mathematical implementations, and practical considerations. ## Core Components ### 1. Generative Model ```python class GenerativeModel: """ Generative model for active inference agent. Implements: - State transition model P(s_t | s_t-1, a_t) - Observation model P(o_t | s_t) - Prior preferences P(s_t) """ def __init__(self, config): self.state_dim = config.state_dim self.obs_dim = config.obs_dim self.action_dim = config.action_dim # Initialize model parameters self.transition_matrix = initialize_transitions() self.observation_matrix = initialize_observations() self.preferences = initialize_preferences() def state_transition(self, state, action): """Compute state transition probability.""" return compute_transition_prob( state, action, self.transition_matrix ) def observation_likelihood(self, state): """Compute observation likelihood.""" return compute_observation_prob( state, self.observation_matrix ) def prior_preference(self, state): """Compute prior preference.""" return compute_preference(state, self.preferences) ``` ### 2. Variational Inference ```python class VariationalInference: """ Implements variational inference for belief updating. """ def __init__(self, model): self.model = model self.learning_rate = 0.1 def update_beliefs(self, beliefs, observation): """Update beliefs using variational inference.""" # Compute free energy gradients gradients = compute_free_energy_gradients( beliefs, observation, self.model ) # Update beliefs using gradient descent updated_beliefs = beliefs - self.learning_rate * gradients # Normalize beliefs return normalize_distribution(updated_beliefs) ``` ### 3. Policy Selection ```python class PolicySelection: """ Policy selection using expected free energy. """ def __init__(self, model): self.model = model self.temperature = 1.0 def evaluate_policies(self, beliefs, policies): """Evaluate policies using expected free energy.""" G = np.zeros(len(policies)) for i, policy in enumerate(policies): # Compute expected free energy components pragmatic_value = compute_pragmatic_value( beliefs, policy, self.model ) epistemic_value = compute_epistemic_value( beliefs, policy, self.model ) G[i] = pragmatic_value + epistemic_value return G def select_action(self, beliefs): """Select action using softmax policy selection.""" policies = generate_policies() G = self.evaluate_policies(beliefs, policies) # Softmax policy selection probabilities = softmax(G / self.temperature) return sample_action(probabilities, policies) ``` ## Implementation Steps ### 1. Basic Setup ```python def setup_active_inference_agent(config): """Setup basic active inference agent.""" # Create generative model model = GenerativeModel(config) # Setup inference inference = VariationalInference(model) # Setup policy selection policy = PolicySelection(model) return ActiveInferenceAgent(model, inference, policy) ``` ### 2. Main Agent Class ```python class ActiveInferenceAgent: """ Complete active inference agent implementation. """ def __init__(self, model, inference, policy): self.model = model self.inference = inference self.policy = policy # Initialize beliefs self.beliefs = initialize_beliefs(model.state_dim) def step(self, observation): """Single step of perception-action cycle.""" # 1. Update beliefs self.beliefs = self.inference.update_beliefs( self.beliefs, observation ) # 2. Select action action = self.policy.select_action(self.beliefs) # 3. Execute action return action ``` ## Advanced Features ### 1. Hierarchical Processing ```python class HierarchicalAgent: """ Hierarchical active inference implementation. """ def __init__(self, level_configs): self.levels = [ ActiveInferenceAgent(config) for config in level_configs ] def update(self, observation): """Update all levels.""" for level in self.levels: prediction = level.step(observation) observation = prediction # Pass prediction as observation ``` ### 2. Memory Integration ```python class MemoryAugmentedAgent: """ Agent with memory integration. """ def __init__(self, config): super().__init__(config) self.memory = EpisodicMemory(config.memory_size) def step(self, observation): # Integrate memory into belief updating memory_state = self.memory.retrieve(self.beliefs) augmented_beliefs = integrate_memory( self.beliefs, memory_state ) # Standard active inference step action = super().step(observation) # Update memory self.memory.store(self.beliefs, action, observation) return action ``` ## Configuration Examples ### Basic Configuration ```yaml agent_config: state_dim: 10 obs_dim: 5 action_dim: 3 learning: learning_rate: 0.1 temperature: 1.0 model: hidden_dims: [64, 32] activation: "relu" ``` ### Hierarchical Configuration ```yaml hierarchical_config: levels: - state_dim: 20 temporal_scale: 1 - state_dim: 10 temporal_scale: 5 - state_dim: 5 temporal_scale: 10 ``` ## Testing and Validation ### 1. Unit Tests ```python def test_belief_updating(): """Test belief updating mechanism.""" agent = setup_test_agent() initial_beliefs = agent.beliefs.copy() observation = generate_test_observation() agent.step(observation) assert np.all(agent.beliefs != initial_beliefs) assert is_normalized(agent.beliefs) ``` ### 2. Integration Tests ```python def test_complete_cycle(): """Test complete perception-action cycle.""" agent = setup_test_agent() environment = setup_test_environment() observation = environment.reset() for _ in range(100): action = agent.step(observation) observation, reward, done, _ = environment.step(action) assert is_valid_action(action) if done: break ``` ## Performance Optimization ### 1. Efficient Computation ```python @numba.jit(nopython=True) def compute_free_energy_gradients(beliefs, observation, model): """Optimized gradient computation.""" # Efficient implementation pass ``` ### 2. Parallel Processing ```python class ParallelPolicyEvaluation: """Parallel policy evaluation.""" def evaluate_policies(self, beliefs, policies): with concurrent.futures.ProcessPoolExecutor() as executor: G = list(executor.map( self._evaluate_single_policy, [(beliefs, p) for p in policies] )) return np.array(G) ``` ## Common Issues and Solutions ### 1. Numerical Stability ```python def stable_softmax(x): """Numerically stable softmax implementation.""" x = x - np.max(x) # Subtract maximum for stability exp_x = np.exp(x) return exp_x / np.sum(exp_x) ``` ### 2. Belief Normalization ```python def normalize_beliefs(beliefs, epsilon=1e-10): """Safe belief normalization.""" beliefs = np.clip(beliefs, epsilon, None) return beliefs / np.sum(beliefs) ``` ## Usage Example ```python # Setup agent config = load_config("agent_config.yaml") agent = setup_active_inference_agent(config) # Run simulation environment = setup_environment() observation = environment.reset() for step in range(max_steps): # Agent step action = agent.step(observation) # Environment step observation, reward, done, info = environment.step(action) # Logging and visualization log_step(step, agent, observation, reward) visualize_state(agent, environment) if done: break ``` ## References - [[knowledge_base/cognitive/active_inference|Active Inference Theory]] - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]] - [[knowledge_base/mathematics/variational_methods|Variational Methods]] - [[examples/active_inference_basic|Basic Example]]