--- title: Active Inference in Neuroscience Learning Path type: learning_path status: stable created: 2024-03-15 complexity: advanced processing_priority: 1 tags: - active-inference - neuroscience - brain-dynamics - cognitive-neuroscience semantic_relations: - type: specializes links: [[active_inference_learning_path]] - type: relates links: - [[neural_dynamics_learning_path]] - [[cognitive_neuroscience_learning_path]] - [[brain_imaging_learning_path]] --- # Active Inference in Neuroscience Learning Path ## Overview This specialized path focuses on applying Active Inference to understand brain function, neural dynamics, and cognitive processes. It integrates neuroscientific theory with computational modeling. ## Prerequisites ### 1. Neuroscience Foundations (4 weeks) - Neural Systems - Neuroanatomy - Neural circuits - Synaptic transmission - Brain networks - Brain Dynamics - Neural oscillations - Population dynamics - Network synchronization - Neuroplasticity - Cognitive Neuroscience - Perception - Action - Learning - Memory - Research Methods - Brain imaging - Electrophysiology - Data analysis - Experimental design ### 2. Technical Skills (2 weeks) - Computational Tools - Python/MATLAB - Neural data analysis - Statistical methods - Visualization ## Core Learning Path ### 1. Neural Implementations (4 weeks) #### Week 1-2: Neural Message Passing ```python class NeuralMessagePassing: def __init__(self, n_regions: int, n_features: int): """Initialize neural message passing network.""" self.regions = nn.ModuleList([ BrainRegion(n_features) for _ in range(n_regions) ]) self.connections = self._initialize_connections() def forward(self, sensory_input: torch.Tensor) -> Dict[str, torch.Tensor]: """Propagate predictions and errors through network.""" predictions = {} errors = {} # Bottom-up pass for region in self.regions: pred = region.generate_prediction() error = region.compute_error(sensory_input) predictions[region.name] = pred errors[region.name] = error return {'predictions': predictions, 'errors': errors} ``` #### Week 3-4: Neural Dynamics ```python class NeuralDynamics: def __init__(self, connectivity: torch.Tensor, time_constants: torch.Tensor): """Initialize neural dynamics model.""" self.connectivity = connectivity self.tau = time_constants self.state = torch.zeros(connectivity.shape[0]) def update(self, input_current: torch.Tensor, dt: float = 0.001) -> torch.Tensor: """Update neural state.""" dxdt = (-self.state + self.connectivity @ self.state + input_current) / self.tau self.state += dt * dxdt return self.state ``` ### 2. Brain Systems (6 weeks) #### Week 1-2: Sensory Systems - Visual Processing - Auditory Processing - Somatosensory Processing - Multisensory Integration #### Week 3-4: Motor Systems - Motor Planning - Action Selection - Movement Control - Sensorimotor Integration #### Week 5-6: Cognitive Systems - Working Memory - Decision Making - Learning and Plasticity - Executive Control ### 3. Clinical Applications (4 weeks) #### Week 1-2: Neurological Disorders ```python class DisorderModel: def __init__(self, disorder_params: Dict[str, float]): """Initialize disorder model.""" self.params = disorder_params self.baseline = self._establish_baseline() def simulate_pathology(self, brain_state: torch.Tensor) -> torch.Tensor: """Simulate disorder effects on brain state.""" affected_state = self.apply_disorder_effects(brain_state) return affected_state ``` #### Week 3-4: Therapeutic Interventions - Treatment Design - Intervention Modeling - Outcome Prediction - Personalized Medicine ### 4. Research Methods (4 weeks) #### Week 1-2: Experimental Design ```python class NeuroimagingExperiment: def __init__(self, paradigm: str, conditions: List[str]): """Initialize neuroimaging experiment.""" self.paradigm = paradigm self.conditions = conditions self.design_matrix = self._create_design_matrix() def run_experiment(self, subject: Subject) -> Dict[str, np.ndarray]: """Run experimental paradigm.""" data = {} for condition in self.conditions: response = self.present_stimulus(subject, condition) data[condition] = self.record_brain_activity(response) return data ``` #### Week 3-4: Data Analysis - Neural Data Processing - Statistical Analysis - Model Comparison - Results Interpretation ## Projects ### Clinical Projects 1. **Disorder Modeling** - Schizophrenia - Parkinson's Disease - Depression - Anxiety 2. **Treatment Optimization** - Drug Effects - Brain Stimulation - Behavioral Interventions - Personalized Medicine ### Research Projects 1. **Neural Mechanisms** - Perception Studies - Action Understanding - Learning Experiments - Decision Making 2. **Clinical Applications** - Biomarker Development - Treatment Response - Disease Progression - Intervention Design ## Assessment ### Knowledge Assessment 1. **Theoretical Understanding** - Neural Mechanisms - Clinical Applications - Research Methods - Data Analysis 2. **Practical Skills** - Experimental Design - Data Collection - Analysis Methods - Result Interpretation ### Final Projects 1. **Research Project** - Experimental Design - Data Collection - Analysis - Publication 2. **Clinical Application** - Patient Assessment - Treatment Design - Outcome Prediction - Validation Study ## Resources ### Scientific Resources 1. **Research Papers** - Foundational Papers - Clinical Studies - Methods Papers - Reviews 2. **Books** - Neuroscience - Clinical Applications - Research Methods - Data Analysis ### Technical Resources 1. **Software Tools** - Analysis Packages - Imaging Tools - Statistical Software - Visualization Tools 2. **Data Resources** - Brain Databases - Clinical Data - Reference Datasets - Analysis Pipelines ## Next Steps ### Advanced Topics 1. [[computational_psychiatry_learning_path|Computational Psychiatry]] 2. [[brain_imaging_learning_path|Brain Imaging]] 3. [[neural_dynamics_learning_path|Neural Dynamics]] ### Research Directions 1. [[research_guides/computational_neuroscience|Computational Neuroscience]] 2. [[research_guides/clinical_neuroscience|Clinical Neuroscience]] 3. [[research_guides/cognitive_neuroscience|Cognitive Neuroscience]]