--- title: Active Inference in Robotics Learning Path type: learning_path status: stable created: 2024-03-15 complexity: advanced processing_priority: 1 tags: - active-inference - robotics - control-theory - autonomous-systems semantic_relations: - type: specializes links: [[active_inference_learning_path]] - type: relates links: - [[robotics_learning_path]] - [[control_theory_learning_path]] - [[autonomous_systems_learning_path]] --- # Active Inference in Robotics Learning Path ## Overview This specialized path focuses on applying Active Inference to robotics and autonomous systems, integrating perception, control, and learning for robust robotic behavior. ## Prerequisites ### 1. Robotics Foundations (4 weeks) - Robot Kinematics - Forward kinematics - Inverse kinematics - Jacobians - Dynamics - Control Theory - State space control - Feedback control - Optimal control - Adaptive control - Perception Systems - Sensor processing - Computer vision - State estimation - Sensor fusion - Planning and Navigation - Path planning - Motion planning - SLAM - Obstacle avoidance ### 2. Technical Skills (2 weeks) - Programming Tools - Python/C++ - ROS/ROS2 - Simulation environments - Hardware interfaces ## Core Learning Path ### 1. Robot Implementation (4 weeks) #### Week 1-2: Robot State Estimation ```python class RobotStateEstimator: def __init__(self, state_dim: int, sensor_dim: int): """Initialize robot state estimator.""" self.state_model = StateTransitionModel(state_dim) self.sensor_model = SensorModel(state_dim, sensor_dim) self.state = torch.zeros(state_dim) def estimate_state(self, sensor_data: torch.Tensor, action: torch.Tensor) -> torch.Tensor: """Estimate robot state from sensor data.""" # Prediction step state_pred = self.state_model(self.state, action) # Update step sensor_pred = self.sensor_model(state_pred) error = sensor_data - sensor_pred # State correction self.state = state_pred + self.compute_update(error) return self.state ``` #### Week 3-4: Action Generation ```python class ActiveInferenceController: def __init__(self, action_dim: int, goal_dim: int): """Initialize active inference controller.""" self.policy_network = PolicyNetwork(action_dim) self.goal_prior = GoalPrior(goal_dim) def select_action(self, current_state: torch.Tensor, goal_state: torch.Tensor) -> torch.Tensor: """Select action using active inference.""" # Compute expected free energy for policies policies = self.policy_network.generate_policies() G = torch.zeros(len(policies)) for i, policy in enumerate(policies): # Simulate policy predicted_states = self.simulate_policy(current_state, policy) # Compute expected free energy G[i] = self.compute_expected_free_energy( predicted_states, goal_state ) # Select policy with lowest expected free energy best_policy = policies[torch.argmin(G)] return best_policy[0] # Return first action ``` ### 2. Robot Systems (6 weeks) #### Week 1-2: Perception Systems - Visual Processing - Tactile Sensing - Force Sensing - Multimodal Integration #### Week 3-4: Control Systems - Motor Control - Force Control - Impedance Control - Whole-body Control #### Week 5-6: Learning Systems - Skill Learning - Task Learning - Adaptation - Transfer Learning ### 3. Applications (4 weeks) #### Week 1-2: Manipulation Tasks ```python class ManipulationTask: def __init__(self, robot: Robot, environment: Environment): """Initialize manipulation task.""" self.robot = robot self.env = environment self.planner = TaskPlanner() def execute_task(self, task_spec: Dict[str, Any]) -> bool: """Execute manipulation task.""" # Generate task plan plan = self.planner.plan_task(task_spec) # Execute actions for action in plan: success = self.robot.execute_action(action) if not success: return self.handle_failure(action) return self.verify_task_completion(task_spec) ``` #### Week 3-4: Navigation Tasks - Path Planning - Obstacle Avoidance - SLAM - Multi-robot Coordination ### 4. Advanced Topics (4 weeks) #### Week 1-2: Human-Robot Interaction ```python class HumanRobotInteraction: def __init__(self, robot: Robot, human_model: HumanModel): """Initialize human-robot interaction.""" self.robot = robot self.human = human_model self.interaction_model = InteractionModel() def adapt_behavior(self, human_state: torch.Tensor) -> torch.Tensor: """Adapt robot behavior to human.""" # Infer human intention intention = self.human.infer_intention(human_state) # Generate adaptive behavior robot_action = self.interaction_model.generate_action( self.robot.state, intention ) return robot_action ``` #### Week 3-4: Learning and Adaptation - Online Learning - Adaptive Control - Robust Behavior - Safety Constraints ## Projects ### Manipulation Projects 1. **Object Manipulation** - Grasping - Assembly - Tool Use - Dexterous Manipulation 2. **Task Learning** - Skill Acquisition - Task Adaptation - Failure Recovery - Generalization ### Navigation Projects 1. **Mobile Robotics** - Indoor Navigation - Outdoor Exploration - Dynamic Environments - Multi-robot Systems 2. **Interactive Tasks** - Human Collaboration - Social Navigation - Gesture Recognition - Natural Interfaces ## Assessment ### Technical Assessment 1. **System Implementation** - Perception Systems - Control Systems - Learning Systems - Integration 2. **Performance Evaluation** - Task Success - Robustness - Efficiency - Safety ### Final Projects 1. **Research Project** - Novel Algorithm - System Integration - Experimental Validation - Documentation 2. **Applied Project** - Real Robot Implementation - Task Demonstration - Performance Analysis - User Study ## Resources ### Technical Resources 1. **Software Tools** - ROS/ROS2 - Simulation Environments - Control Libraries - Vision Libraries 2. **Hardware Platforms** - Robot Arms - Mobile Platforms - Sensors - Computing Systems ### Learning Resources 1. **Documentation** - API References - Tutorials - Example Code - Best Practices 2. **Research Papers** - Core Methods - Applications - Case Studies - Benchmarks ## Next Steps ### Advanced Topics 1. [[advanced_robotics_learning_path|Advanced Robotics]] 2. [[human_robot_interaction_learning_path|Human-Robot Interaction]] 3. [[robot_learning_learning_path|Robot Learning]] ### Research Directions 1. [[research_guides/robotics|Robotics Research]] 2. [[research_guides/control_theory|Control Theory Research]] 3. [[research_guides/autonomous_systems|Autonomous Systems Research]]