зеркало из
https://github.com/docxology/cognitive.git
synced 2025-11-01 21:56:04 +02:00
242 строки
5.5 KiB
Markdown
242 строки
5.5 KiB
Markdown
# AI-Oriented Additional Folders
|
|
|
|
---
|
|
title: AI Additional Folders Guide
|
|
type: guide
|
|
status: stable
|
|
created: 2024-02-06
|
|
tags:
|
|
- organization
|
|
- structure
|
|
- ai
|
|
- extensions
|
|
related:
|
|
- [[ai_file_organization]]
|
|
- [[ai_documentation_style]]
|
|
- [[knowledge_organization]]
|
|
---
|
|
|
|
## Overview
|
|
This guide defines additional folder structures and organization patterns optimized for advanced AI processing and knowledge management.
|
|
|
|
## Extended Directory Structure
|
|
|
|
### Research Artifacts
|
|
```
|
|
research/
|
|
├── experiments/ # Experiment specifications
|
|
│ ├── designs/ # Experimental designs
|
|
│ ├── protocols/ # Experimental protocols
|
|
│ └── results/ # Results and analysis
|
|
│
|
|
├── papers/ # Research papers
|
|
│ ├── drafts/ # Work in progress
|
|
│ ├── published/ # Published papers
|
|
│ └── references/ # Reference materials
|
|
│
|
|
└── data/ # Research data
|
|
├── raw/ # Raw data
|
|
├── processed/ # Processed data
|
|
└── analysis/ # Analysis results
|
|
```
|
|
|
|
### Knowledge Embeddings
|
|
```
|
|
embeddings/
|
|
├── vectors/ # Embedding vectors
|
|
│ ├── concepts/ # Concept embeddings
|
|
│ ├── documents/ # Document embeddings
|
|
│ └── relations/ # Relationship embeddings
|
|
│
|
|
├── models/ # Embedding models
|
|
│ ├── trained/ # Trained models
|
|
│ ├── checkpoints/ # Training checkpoints
|
|
│ └── configs/ # Model configurations
|
|
│
|
|
└── analysis/ # Embedding analysis
|
|
├── similarity/ # Similarity matrices
|
|
├── clusters/ # Cluster analysis
|
|
└── visualization/ # Embedding visualizations
|
|
```
|
|
|
|
### Semantic Processing
|
|
```
|
|
semantic/
|
|
├── ontologies/ # Domain ontologies
|
|
│ ├── core/ # Core domain concepts
|
|
│ ├── relations/ # Relationship definitions
|
|
│ └── mappings/ # Cross-domain mappings
|
|
│
|
|
├── reasoning/ # Reasoning engines
|
|
│ ├── rules/ # Inference rules
|
|
│ ├── logic/ # Logical frameworks
|
|
│ └── constraints/ # Constraint definitions
|
|
│
|
|
└── queries/ # Semantic queries
|
|
├── templates/ # Query templates
|
|
├── patterns/ # Search patterns
|
|
└── results/ # Query results
|
|
```
|
|
|
|
### Interactive Learning
|
|
```
|
|
interactive/
|
|
├── tutorials/ # Interactive tutorials
|
|
│ ├── basic/ # Basic concepts
|
|
│ ├── advanced/ # Advanced topics
|
|
│ └── specialized/ # Domain-specific
|
|
│
|
|
├── notebooks/ # Jupyter notebooks
|
|
│ ├── examples/ # Example notebooks
|
|
│ ├── exercises/ # Practice exercises
|
|
│ └── solutions/ # Exercise solutions
|
|
│
|
|
└── simulations/ # Interactive simulations
|
|
├── environments/ # Simulation environments
|
|
├── scenarios/ # Scenario definitions
|
|
└── results/ # Simulation results
|
|
```
|
|
|
|
## Metadata Requirements
|
|
|
|
### Research Metadata
|
|
```yaml
|
|
research_metadata:
|
|
experiment:
|
|
id: string
|
|
type: string
|
|
status: string
|
|
dependencies: list
|
|
validation: object
|
|
paper:
|
|
title: string
|
|
authors: list
|
|
status: string
|
|
related_experiments: list
|
|
data:
|
|
source: string
|
|
format: string
|
|
schema: object
|
|
validation: object
|
|
```
|
|
|
|
### Embedding Metadata
|
|
```yaml
|
|
embedding_metadata:
|
|
vector:
|
|
model: string
|
|
dimensions: integer
|
|
timestamp: datetime
|
|
source: string
|
|
model:
|
|
architecture: string
|
|
parameters: object
|
|
performance: object
|
|
analysis:
|
|
method: string
|
|
parameters: object
|
|
results: object
|
|
```
|
|
|
|
### Semantic Metadata
|
|
```yaml
|
|
semantic_metadata:
|
|
ontology:
|
|
domain: string
|
|
version: string
|
|
dependencies: list
|
|
validation: object
|
|
reasoning:
|
|
engine: string
|
|
rules: list
|
|
constraints: object
|
|
query:
|
|
type: string
|
|
pattern: string
|
|
parameters: object
|
|
```
|
|
|
|
## Processing Instructions
|
|
|
|
### Research Processing
|
|
```python
|
|
# @research_processing
|
|
def process_research():
|
|
"""
|
|
Processing steps:
|
|
1. Extract experimental data
|
|
2. Analyze results
|
|
3. Generate visualizations
|
|
4. Update knowledge base
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Embedding Processing
|
|
```python
|
|
# @embedding_processing
|
|
def process_embeddings():
|
|
"""
|
|
Processing steps:
|
|
1. Generate embeddings
|
|
2. Update vector store
|
|
3. Analyze relationships
|
|
4. Optimize representations
|
|
"""
|
|
pass
|
|
```
|
|
|
|
### Semantic Processing
|
|
```python
|
|
# @semantic_processing
|
|
def process_semantics():
|
|
"""
|
|
Processing steps:
|
|
1. Parse ontologies
|
|
2. Apply reasoning rules
|
|
3. Execute queries
|
|
4. Update knowledge graph
|
|
"""
|
|
pass
|
|
```
|
|
|
|
## Integration Points
|
|
|
|
### Research Integration
|
|
```mermaid
|
|
graph TD
|
|
A[Experiments] --> B[Analysis]
|
|
B --> C[Papers]
|
|
C --> D[Knowledge Base]
|
|
D --> E[Semantic Graph]
|
|
```
|
|
|
|
### Embedding Integration
|
|
```mermaid
|
|
graph LR
|
|
A[Documents] --> B[Vectors]
|
|
B --> C[Analysis]
|
|
C --> D[Knowledge Graph]
|
|
D --> E[Reasoning]
|
|
```
|
|
|
|
### Semantic Integration
|
|
```mermaid
|
|
graph TD
|
|
A[Ontologies] --> B[Reasoning]
|
|
B --> C[Queries]
|
|
C --> D[Results]
|
|
D --> E[Knowledge Update]
|
|
```
|
|
|
|
## Related Documentation
|
|
- [[ai_file_organization]]
|
|
- [[research_management]]
|
|
- [[embedding_framework]]
|
|
- [[semantic_processing]]
|
|
|
|
## References
|
|
- [[research_workflows]]
|
|
- [[embedding_techniques]]
|
|
- [[semantic_frameworks]]
|
|
- [[integration_patterns]] |