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Abstract

Microbial network construction is a popular explorative data analysis technique in microbiome research. Although a large
number of microbial network construction tools has been developed to date, there are several issues concerning the
construction and interpretation of microbial networks that have received less attention. The purpose of this perspective is to
draw attention to these underexplored challenges of microbial network construction and analysis.

Introduction

To date, the microbial composition of thousands of samples
from hundreds of ecosystems has been resolved, thanks to
high-throughput sequencing [1]. Microbial network con-
struction is a popular exploratory data analysis technique to
derive hypotheses from these massive data sets [2]. For
instance, it has been applied to identify taxa sharing a
common role in an ecosystem such as oxygen-producing
cyanobacteria in a seasonally stratified lake [3], to link taxa
to a function of interest such as carbon flux in the oceans
[4], and to predict biotic interactions [5].

In contrast to networks built for macroorganisms, which
are based on observations of biotic interactions between
individuals, a microbial network is constructed from a count
table obtained from sequencing data. To extract DNA for
sequencing, samples need to be homogenized, and thus
microhabitats within each sample are aggregated. This
means that the microbial network may change with sam-
pling resolution [6]. The steps from the raw reads to the
count table come with numerous challenges of their own
[7], and unless sequences are derived from RNA, counts do
not distinguish between active and dead or dormant cells.
Sequences can be grouped into operational taxonomic units
in a variety of ways or can be kept separate as amplicon
sequence variants [8]. In addition, microbial networks can
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be constructed at different taxonomic levels. Thus, a node in
a microbial network can represent different units depending
on the selected sequencing data processing pipeline and
taxonomic level, and the choice of the unit also matters for
network construction and interpretation. For instance, the
challenge of rare taxa discussed below is less pronounced
for a microbial network constructed on class level. An edge
connecting two nodes representing different units denotes a
significant association between the abundances of these
units across the samples. Consequently, the biological
meaning of an edge in a microbial network is uncertain and
requires further analysis and/or experimental validation to
be determined.

While new microbial network inference algorithms are
published every year, challenges pertaining to data pre-
processing, confounding factors, evaluation, and network
interpretation are largely ignored. The goal of this per-
spective is to draw attention to these underexplored chal-
lenges of microbial network construction and analysis. For
this reason, the list of challenges does not cover technical
problems of network construction such as the treatment of
compositional data, removal of indirect edges between taxa,
and causal inference since they already receive ample
attention.

Challenge #1: Do taxon interactions
influence microbial community
composition?

The edges in microbial networks are often interpreted as
biotic interactions (e.g., cross-feeding of byproducts or
competition for nutrients), and several interactions predicted
in this manner have been experimentally confirmed [5, 9].
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However, interactions may either be absent or too weak to
impact community composition, or community composition
may have been sampled at spatial or temporal resolutions
that are insufficient for ecological interaction detection
[6, 10]. In these cases, network inference may still give
insights about environmental factors shaping community
composition, but if community dynamics are dominated
entirely by stochastic processes at the chosen sampling
scale, a network is no longer informative, i.e., the correct
outcome of network construction should be an empty net-
work. Thus, a quick test to differentiate between stochastic
(including neutral) and deterministic community dynamics
would prevent time-consuming network construction and
misleading interpretation. Even though several tests have
been proposed [11-14], they have rarely, if ever, been
validated on real communities where the rules governing the
dynamics are known. Thus, the first challenge is to develop
and evaluate tests for interaction-driven community
dynamics and to apply them in the context of microbial
network inference.

Challenge #2: How should abundance data
be preprocessed?

Due to differences in extraction, amplification, and
sequencing efficiencies, the total read count varies across
samples, but is unrelated to cell density and thus carries no
biological information. Since taxon abundances covary with
total read count, some form of preprocessing is necessary to
prevent spurious associations. One such technique is rar-
efaction, which in essence randomly picks reads from a
sample until a predefined lower number of reads has been
selected, which is the same for each sample. Since the
probability to choose a read from a particular taxon is
determined by its proportion in the sample, the original
taxon proportions are preserved. Rarefaction has been cri-
ticized because it effectively discards a part of the data,
lowering the power of microbiome comparisons [15].
However, given the high technical variability of 16S rRNA
gene sequencing, this argument does not carry much weight
(also, results in ref. [15] have not been reproduced [16]). In
fact, repeated rounds of rarefaction have even been used to
test the robustness of network inference results [17]. A
number of other preprocessing techniques is available
besides rarefaction (the simplest of which is the conversion
of counts to relative abundances), but there are precious
little data on their performance in the context of network
construction [17].

Experimentally determined cell densities can also be
used to adjust total read counts [18]. Whether this is
useful for network construction depends on whether cell
densities vary as a result of biotic interactions or due to an
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external factor that is not of biological interest. For
instance, if variations in nutrient concentration change the
cell densities but not the species proportions, then varying
total cell number (per volume) is a confounder to be
removed.

In summary, the second challenge is to compare the
performance of different preprocessing techniques across
network inference tools to determine which combinations
work best.

Challenge #3: What to do with rare taxa?

The majority of taxa in sequencing data are only found in
very few samples. This means that a large part of
sequencing data consists of zeros. In ecological count data,
a zero may either represent a true absence or a presence
below detection level (i.e., the taxon was there, but its
DNA did not make it into the count table). Two taxa with
matching zeros across most samples will be strongly
associated, but if in truth they vary randomly below
detection level, this association will be misleading. There
are two filtering approaches to deal with this problem, both
of which introduce an arbitrary threshold: the first removes
taxa that are present in too few samples (prevalence filter),
whereas the second forbids computing an association
between taxon pairs when the number of matching zeros is
too large (see Fig. 1). Of note, when applying the pre-
valence filter, the sum of discarded taxa should be kept
before further preprocessing steps are carried out, since
otherwise the relative abundance of the remaining taxa will
be altered.

The rare taxon threshold, whether applied to a single
taxon or a taxon pair, has to strike a careful balance: if it is
too stringent, it ignores valuable information carried by the
zeros, namely that taxon proportions are low in some
samples. If on the contrary it is too lenient, it does not
resolve the bias caused by too many matching zeros.

Some association measures, such as the Bray Curtis
dissimilarity, are designed to ignore matching zeros. How-
ever, when too few nonzero value pairs are available, the
association is not reliable. Thus, association measures that
are robust to matching zeros do not avoid the need to define
an arbitrary threshold to deal with zeros. Cougoul et al.
recently proposed formulas to compute the number of zeros
above which a meaningful test for association is no longer
possible, because minimal and maximal association values
fall within the confidence interval [19]. This test gives an
upper bound for the number of zeros and is a step in the
right direction. Depending on the research question, the
challenge of rare taxa can also be circumvented by aggre-
gating taxa into higher taxonomic units, e.g., to work on
class instead of genus level.
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Challenge #4: How to deal with
environmental factors?

Microbial community composition is strongly influenced by
environmental factors such as pH, moisture, oxygen levels,
and nutrients. In most systems, these will vary across
samples, and microbes will respond to these changes. It is
thus difficult to determine whether an edge in a microbial
network is due to a common response to an environmental
factor (or a third taxon) or represents a direct interaction
between two taxa. Several methods exist to deal with the
environmental impact (summarized in Fig. 2). The easiest is
to include environmental factors as additional nodes and to
compute their associations with microbial taxa (Fig. 2c).
This is implemented in tools such as CoNet [20] and
FlashWeave [21] and in the best cases shows how the
environment structures microbial community composition.
Another strategy is to split samples into groups, either
through sample-wise clustering or according to a key vari-
able such as water depth or health status and to build net-
works for each sample group separately (e.g., [9, 22], see
Fig. 2d). Since the environment is more homogeneous
within groups, group-specific networks will have fewer
edges due to environmental variation. In extreme cases,
taxon presence/absence is entirely due to environmental
factors. In these cases, ignoring matching zeros when
computing associations, as implemented in FlashWeave’s
HE mode, is equivalent to splitting samples into groups.
This shows that the problem of environmental heterogeneity
is closely linked with the previous challenge of rare taxa; a
taxon may only be rare because it belongs to an environ-
ment that is underrepresented among the samples. In addi-
tion to the environment-as-node and sample-grouping

strategies, another method is to regress out environmental
factors and to infer associations in the residual abundances
that are supposedly free of environmental influence [23]
(Fig. 2e). However, many species respond nonlinearly to
environmental parameters, i.e., they have an optimal range
and decline in growth when the parameter changes beyond
that range. Although regression can be extended to handle
such nonlinearities, this increases the risk of overfitting the
data. Finally, environmentally induced indirect edges can be
filtered after network construction (Fig. 2f), for instance, by
removing the edge with the lowest mutual information in
each fully connected triplet of nodes [9, 24].

Given this range of strategies, which one is the best to
deal with environmental influence? The optimal strategy
depends on the data and the research question. If the goal is
to investigate whether and how the community composition
is affected by environmental factors, the environment-as-
node strategy can suggest candidate taxa sensitive to spe-
cific environmental factors. If in contrast the goal is the
inference of biotic interactions, then the environment should
be as homogeneous as possible, by stratifying samples or
better, by experimental design; the experiment needs to be
designed such that biotic interaction detection is possible. If
the sampling process aggregates distinct microhabitats, then
the network cannot capture biotic interactions specific to a
microhabitat.

In case of heterogeneous environments without strong
sample-wise clustering, the environment-as-node strategy
can be combined with indirect edge filtering or the regres-
sion technique can be employed. Since a systematic eva-
luation of these different techniques is still missing, the
fourth challenge is to evaluate different strategies to deal
with environmental confounders.

SPRINGER NATURE
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Fig. 2 Treatment of environmental heterogeneity. a Taxa respond
to environmental factors such as pH. b A common response to
environmental factors introduces indirect edges in the microbial net-
work. To deal with this challenge, ¢ environmental factors can be
integrated during network construction and considered when inter-
preting the network, d samples can be stratified, either manually or
through clustering techniques, and a network constructed per sample

Challenge #5: What about higher-order
interactions (HOIs)?

According to a stringent definition, an HOI is an interaction
between a number of species that is altered by an additional
species [25]. For instance, if one microbe depends on a
molecule secreted by another, and a third microbe produces
the same molecule, the cross-feeding relationship between
the first two microbes is weakened. HOIs affect community
stability and diversity in simulations [26, 27] and were
shown to alter host fitness in experiments [28]. HOIs can be
detected by measuring growth curves of species pairs and
parameterizing a HOI-free model on these data. Deviations
of model predictions from community behavior may then
indicate the presence of HOIs (e.g., refs. [28, 29]). How-
ever, since the HOI-free model may fail to predict obser-
vations for other reasons than the presence of HOIs, this
approach is not guaranteed to identify HOIs in the narrow
sense of modified interactions [25].

Most microbial network construction tools neglect HOIs.
Previously, the principle of entropy maximization (finding
correlations such that an entropy function is maximized) has
been employed to infer HOIs between genes from gene
expression data [30]. It is an open question whether entropy
maximization could also infer HOIs from microbial
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(e) Regress out
environmental
factors before
network

(f) Filter network

construction

group, e the impact of environmental factors on taxon abundances can
be removed before network construction through regression (often
implemented assuming linear environmental response functions), and f
the network can be filtered to remove indirect edges after construction,
for instance, using data processing inequality [24] or network decon-
volution [49].

abundance data. In presence/absence of data, association
rule mining can uncover logical rules that can be interpreted
as HOIs. An example for such a rule is a species A that is
only found in the presence of two species B and C, for
instance, because it needs two cofactors produced by B and
C, respectively. In this case, the interaction between A and
B or A and C is nonexistent until the arrival of the third
species, which can be seen as an extreme case of interaction
modification. Although a few association rules involving
more than two microbial taxa have been reported previously
[31], it is not clear whether these are due to overfitting (a
challenge for all HOI inference algorithms), environmental
factors, combinations of pair-wise associations, or true
HOISs. Finally, visualizing HOISs is not trivial and requires
hypergraphs, i.e., networks where an edge connects more
than two nodes. Interpreting and analyzing such hyper-
graphs are additional open challenges of HOIs.

Challenge #6: How to evaluate microbial
network construction in silico?

Evaluations are carried out to assess which tools infer the
most accurate networks and to explore how sample number
and other data properties affect tool performance. Given the
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lack of comprehensive biological benchmark data, evalua-
tion of microbial network inference is still to a large extent
carried out in silico. Artificial data sets are generated with a
number of approaches, ranging from simulations with
population models (usually the generalized Lotka—Volterra,
e.g., [32]) to statistical approaches that produce multivariate
distributions given a desired correlation matrix (NorTA,
[33]). In general, tool performance is sensitively dependent
on how well the data generation process matches tool
assumptions. This is desired if the data generation process is
known, but for most microbial communities, it is not pre-
cisely known which processes shape taxon abundances.
Thus, an evaluation relying on a single data generation
method will favor those tools whose assumptions happen to
be closest to those behind data generation. To avoid this
bias, in silico evaluation needs to employ a range of data
simulation procedures incorporating different levels of
noise. Another important point is to separate tool develop-
ment from evaluation since it is difficult for tool developers
to evaluate their tools objectively. These criteria are
implemented in evaluation frameworks such as the
DREAM challenge for gene regulatory network inference
[34]. Although a corresponding challenge for microbial
network inference is still missing, a few independent eva-
luations of microbial network inference tools have been
carried out to date [17, 35], albeit only the former used
several data generation methods. Interestingly, in both
evaluations, classical correlation measures such as Pearson
and Spearman performed often as well as more sophisti-
cated new network inference algorithms. A possible reason
for this surprising outcome may be that new algorithms
excel in solving a particular problem for which they were
designed, such as inference in highly uneven compositional
data, but then perform worse at other problems of equal
importance, such as inference in the presence of noise. A
DREAM challenge for microbial networks would equip tool
developers with more heterogeneous benchmark data and
ultimately lead to tools that perform better in more diverse
settings.

Challenge #7: How to benchmark microbial
network construction on biological data?

The gold standard for bioinformatics tool benchmarking is
an evaluation on biological data for which the result is
known. For microbial network inference, this means eval-
uating inference tools on microbial sequencing data
obtained for a community with known interactions.
Although such data sets are still rare, a few have been
published over the years. For instance, a list of known
eukaryotic phytoplankton interactions has been compiled
and used for network validation [9]. A large number of

microbial interactions have also been validated experimen-
tally for Arabidopsis root communities [5].

However, there are several problems when benchmarking
network inference on biological data. First, it is not clear
whether the list of known interactions is complete and
consequently, whether a predicted interaction is wrong or
simply was not observed yet. For this reason, interactions
observed previously in nature cannot be used to determine
the accuracy of network inference tools but only their sen-
sitivity, i.e., the probability that the tool will spot known
interactions. This is insufficient to compare tools since a tool
can game this criterion by simply reporting as many edges as
possible. In contrast, when working with small communities
in controlled conditions, all interactions, as well as their
absence, can be enumerated (as done in ref. [36]). However,
it is then not certain whether these interactions are also
relevant in nature. The second problem of benchmarking
with biological data is that inferred interactions may differ
from expected interactions due to HOIs rather than mistakes
in the inference. One way to address this problem is to test
for the presence of HOIs as described in the fifth challenge.

In conclusion, communities where interactions are
known and sequencing data are available are the gold
standard for benchmarking microbial network construction.
Since such data sets are still rare, the challenge is an
experimental one: to generate many more of these bench-
mark data to improve tool performance.

Challenge #8: What can we learn from the
hairballs?

Microbial network inference algorithms usually return
“hairballs” of densely interconnected taxa that require fur-
ther analysis to yield testable hypotheses. But despite the
wealth of inference tools, only a few analysis tools dedi-
cated to microbial networks have been developed to date
[37-39]. Two types of network analysis are particularly
informative: data integration and clustering. Networks are
particularly suitable for integrating heterogeneous data.
Information about microorganisms such as the presence of
particular genes, environmental preferences (e.g., pH
optima), and known metabolic abilities can be mapped onto
nodes, whereas known interactions or results from other
inference tools can be mapped onto edges. These additional
data help to confirm interactions and to identify indirect
edges that result from common responses to a third taxon or
environmental factor. In addition, the integration of external
data may in some cases suggest an interaction mechanism.
For instance, if taxon A has the vitamin B12 pathway and
taxon B lacks genes for B12 synthesis, a positive relation-
ship between them may be mediated by vitamin B12
exchange, as described for gut bacteria [40].

SPRINGER NATURE
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Clustering assigns nodes to groups, either de novo or
using predefined cluster memberships. In the first case,
network cluster algorithms group taxa together that tend to
be connected to the same neighbors. Such taxon groups
often covary in response to environmental factors such as
pH and temperature, and therefore de novo clustering is a
means to uncover niche structure. For instance, the mem-
bers of different clusters in a cheese microbial network
respond differently to moisture [37]. In the second case,
taxa are assigned to clusters according to prior knowledge,
for instance, their plankton function type [9] or their phy-
lum. This simplifies the network, so that the task is no
longer to understand relationships between thousands of
taxa but between a dozen groups. In both cases, the clusters
can also be tested for enrichment of particular taxonomic
groups or functions or correlated to metadata, for instance,
to carbon flux [4]. Despite their usefulness for network
interpretation, there are few software tools carrying out
these tasks. Thus, the eighth challenge is to develop more
analysis tools tackling data integration and cluster analysis.

Challenge #9: How to identify core
networks?

High-throughput sequencing makes it possible to sequence
many instances of an ecosystem or to sequence an ecosys-
tem across different time points. In these cases, the question
arises whether the microbial network is preserved across
space or time. A straightforward method to answer this
question is to construct a microbial network for each sample
group representing an area, condition, or a time point
separately and then to compute the intersection of these
networks. The resulting intersection network only contains
edges that are present in all specific networks and can
therefore be interpreted as the core network of the ecosys-
tem of interest. There are several issues with the identifi-
cation of core networks. First, a core network is informative
only if it has more edges than expected by chance. How-
ever, it is not clear which null model to choose to compute
the random expectation, which complicates the interpreta-
tion of core networks. Second, edges may only be preserved
in a subset of specific networks. If such edges are
encountered more frequently than expected by chance, they
are still of interest, however they will be missed by a global
intersection approach. Thus, the identification of core net-
works is more challenging than simply computing the
global intersection network and deserves dedicated tools.
A disclaimer is needed here: core networks are not
identical to the universal networks discussed by Bashan
et al. [41]. These authors propose a test for the universality
of interaction networks that drive community dynamics in
different instances of an ecosystem. Core networks are
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inferred networks and therefore may contain edges that do
not represent interactions. Thus, the existence of a sig-
nificant core network does not imply that community
dynamics is universal.

Challenge #10 How well do microbial
networks represent ecosystems?

Microbial networks are frequently constructed to identify
highly connected nodes, so-called hubs. The idea behind
hub detection is that these are taxa of special importance for
the ecosystem, i.e., keystones in Paine’s sense [42]. This
idea makes two important assumptions: first, that hub taxa
can be correctly identified by network inference algorithms
and second, that they play indeed a special role in the
ecosystem. Evaluations testing the first assumption have
shown that network inference algorithms do not always
identify known hub nodes correctly [2, 32]. In addition,
very few hub taxa have been experimentally confirmed to
be keystone species (e.g., [43]), so that the validity of the
second assumption is currently an open question. This leads
to the more general question whether networks represent
ecosystems well enough that systems level insights can be
gained through network analysis. Assuming that network
inference is sufficiently accurate, can network properties
such as negative edge percentage, modularity, and network
density give useful information about the ecosystem under
study? Although several theoretical studies have addressed
the impact of network properties on ecosystem stability
(e.g., [44-46]), experimental evidence is still scarce and not
always in agreement with theoretical expectations (e.g.,
[47, 48]). Thus, the final challenge is to explore more
deeply the link between network and ecosystem properties.

Addressing these challenges will enable microbial ecol-
ogists to better distinguish edges representing biotic inter-
actions from others, which in turn will increase the success
rate of validation experiments in interaction discovery. In
addition, tools for microbial network clustering and data
integration will make it easier to identify biologically
meaningful taxon groups. Finally, it is to be hoped that a
better understanding of the links between network and
ecosystem properties will turn network properties from
mere numbers into useful information.

In conclusion, if we want to learn more from microbial
networks, we need to broaden our research focus beyond
inference algorithms and tackle these challenges.
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