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ABSTRACT

Poudel, R., Jumpponen, A., Schlatter, D. C., Paulitz, T. C., McSpadden
Gardener, B. B., Kinkel, L. L., and Garrett, K. A. 2016. Microbiome
networks: A systems framework for identifying candidate microbial assem-
blages for disease management. Phytopathology 106:1083-1096.

Network models of soil and plant microbiomes provide new opportunities
for enhancing disease management, but also challenges for interpretation. We
present a framework for interpreting microbiome networks, illustrating how
observed network structures can be used to generate testable hypotheses
about candidate microbes affecting plant health. The framework includes
four types of network analyses. “General network analysis” identifies can-
didate taxa for maintaining an existing microbial community. “Host-focused
analysis” includes a node representing a plant response such as yield, iden-
tifying taxa with direct or indirect associations with that node. “Pathogen-

focused analysis” identifies taxa with direct or indirect associations with taxa
known a priori as pathogens. “Disease-focused analysis” identifies taxa
associated with disease. Positive direct or indirect associations with
desirable outcomes, or negative associations with undesirable outcomes,
indicate candidate taxa. Network analysis provides characterization not
only of taxa with direct associations with important outcomes such as
disease suppression, biofertilization, or expression of plant host resistance,
but also taxa with indirect associations via their association with other key
taxa. We illustrate the interpretation of network structure with analyses of
microbiomes in the oak phyllosphere, and in wheat rhizosphere and bulk soil
associated with the presence or absence of infection by Rhizoctonia solani.

Additional keywords: biocontrol, networks, phytobiome, Quercus macro-
carpa, Triticum aestivum.

Individual plants are complex systems whose productivity is
a function of interactions with and among diverse organisms
associated with them, as well as with their abiotic environment.
These complex networks of interaction have profound effects on
plant health, stress tolerance, growth dynamics, and yield. Plant
microbiome research represents the most recent development of
fields of inquiry previously referred to as soil microbiology, plant
microbial ecology, or plant_microbe interactions. As the tools of
these research areas change, so do the foci of investigations. Nearly
20 years ago, plant pathologists first started using the emerging
molecular tools of microbial ecology to more fully characterize
the uncultured fraction of microorganisms associated with plants
and soils, to gain insights previously unavailable to a science
heavily reliant on culture-dependent methods. Prior to low cost,
high-throughput sequencing, molecular profiling methods, such
as ARISA (Robleto et al. 1998), DGGE (Postma et al. 2000), and
T-RFLP (McSpadden Gardener and Weller 2001), were used to
characterize the relative abundance and diversity of microorgan-
isms that could affect plant health. While relatively crude, such
approaches proved useful for discovering new species of biocontrol
agents that suppress pathogens (e.g., Benitez and Gardener 2009).
With the rise of new sequencing technologies, the depth and
complexity ofmicrobial community profiling has greatly expanded.
However, applications of microbiome studies have continued to

focus on the identification of functionally important microbial
populations based on correlations and/or differential abundances of
molecular markers (Debenport et al. 2015; Mazzola et al. 2015).
The limitation of that approach is that it generally considers each
group of markers in isolation, ignoring the likely connections that
occur among thepopulations co-inhabiting thephytosphere.Network
analysis offers a means to evaluate not only direct interactions, but
also potential chains of indirect interactions among community
members. Network models offer a new perspective on microbial
communities associated with plants and soils, and they are quickly
becoming a common feature of microbiome analyses.
As sequencing technologies evolve, the large number of microbial

operational taxonomic units (OTUs) recovered from microbiome
studies presents a challenge for analysts of microbial community
structure and function. The most common approaches to evaluating
microbial communities have been estimation of diversity, and
multivariate statistical approaches such as non-metric multidimen-
sional scaling or principal coordinate analysis to classify sample sets
by some discriminating variable, such as location, soil type, or plant
health status. The twodata sets included in newnetwork analysis case
studies in this paperwere previously analyzed in papers that illustrate
this general approach (Jumpponen and Jones 2010; Yin et al. 2013).
These approaches provide information about overall community
composition, but they fail to capture the potential interactions among
the OTUs. Understanding interactions amongmicrobial populations,
their plant hosts, and the abiotic environment can open up new
opportunities to better manage microbial communities crucial to
plant health.
Network models can portray the members of a microbial

community along with inference about their interactions. In
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microbiome network models, a node typically represents a
taxonomic group (such as a named species or sequence-defined
OTU). A link is defined between two nodes if they have some type
of relationship, most commonly a positive correlation in frequency.
These measures of relationship represent microbial co-occurrence
and may capture associations based on ecological properties of soil
(Barberan et al. 2012; van Bruggen and Semenov 2000), the
methane cycling potential of roots (Edwards et al. 2015), or shared
bacterial communities among plant species (Bakker et al. 2014).
Similarly, networks of host co-occurrence may also be useful for
anticipating sharing of pathogens among hosts (e.g., Cox et al.
2013), and the resulting ecological and evolutionary effects on
pathogens and other microbes. Further, microbiome network
models can be used to evaluate the dynamic structure of microbial
communities based on network topologies, providing a quantitative
characterization of a complex community. With advances in
technologies for microbial characterization, network analysis
of microbiomes sampled at very frequent intervals may allow
prediction of causal relationships between taxa even based on relative
abundance and co-association. Such analyses at frequent intervals
could also aid in defining the resilient or background microbial
communities in contrast to taxa that fluctuate greatly as a function of
time or respond to experimental treatments.
The implication of network topologies has been described for

many types of systems (Barberan et al. 2012; Chadès et al. 2011;
Edwards et al. 2015; Faust and Raes 2012; Faust et al. 2012; Shaw
and Pautasso 2014; Zhou et al. 2010). Many of these applications
use network topologies to infer the functions, structures, and
dynamics of interacting entities, in social science (Barrat et al. 2004;
Germanos et al. 2015), food webs (Kefi et al. 2012), molecular
biology (MacNeil and Walhout 2011), engineering (Barrat et al.
2004), and ecology (Sole and Montoya 2001). For example, topo-
logical features (Box 1) such as mean node degree indicate the
mean number of interactions among the nodes in a system, where
highly connected nodes are referred to as hub nodes. Hub nodes are
useful in targeting key locations for epidemic surveillance (Grange
et al. 2014; Hernandez Nopsa et al. 2015), allocating resources for

effective conservation of endangered species (Grange et al. 2014),
and developing strategies for immunization (Bai et al. 2007; Wang
et al. 2009). The number of modules in a network is another
topological feature (e.g., Bakker et al. 2014), alongwithmany other
potential characterizations (Box 1) (Barberan et al. 2012; Zhou et al.
2010). Thus, applying knowledge about networkmodels, developed
across multiple disciplines, to the analysis of microbiome data
and associated relevant variables (such as plant, soil, and water
measurements) offers an opportunity to enhancemicrobiome-based
disease management and biofertilization of crops.
Network models provide tools for understanding microbiomes

as a system, and how microbiome structure can influence crop
health. When pairs of candidate biocontrol taxa, selected because
of promising performance as individual biocontrol agents, were
deployed together, the combination was often less effective for
biocontrol than use of an individual taxon (Xu et al. 2011).
Designing useful synthetic communities based on microbiomes
provides a direct way to harness the benefits of microbiome
research (Knight 2015). However, given that microbial commu-
nities are often hyperdiverse (Jumpponen and Jones 2009) and
that understanding of the functionality of the majority of taxa
in real production systems is limited, designing a synthetic com-
munity model will be challenging. To address the challenge, many
researchers have used host phenotypes to define the nature of
microbiomes. Preferential selection of microbes by plant hosts, a
feature long ago established using culture-dependentmethods (Curl
and Trulove 1986), has been thoroughly demonstrated for multiple
host types (Edwards et al. 2015; Lundberg et al. 2012; McKenzie
et al. 2012; Peiffer et al. 2013) across multiple biomes (Faust et al.
2015). Such associations have been extended to connect micro-
biome and biochemical data, allowing researchers to suggest
linkages at both the ecological and biochemical levels. For example,
recent work compared the host influence on the soil microbial
assemblage in a phytohormone mutant and a related wild type of
Arabidopsis thaliana (Lebeis et al. 2015). A synthetic community
was established based on an enriched pool of microbes that were
only able to colonize the wild type and not the mutant. In a further
step, work by Panke-Buisse et al. (2015) reported successive
enrichment of the microbiome by harvesting the soil associated with
specific plant phenotypes over multiple generations, showing how
microbiomes can be selected to modify plant traits and physiology.
Although the rationale for selecting subsets of taxa raises multiple
questions, host phenotype-based selection of microbes followed by
an enrichment assay is promising. These results support the idea that
synthetic communities of select microbial agents can be deployed,
with the potential to successfully colonize hosts, providing new
avenues for modulating the phytobiome with the aim to enhance
crop yields and/or sustainability (Berendsen et al. 2012). Analysis
of microbiome networks offers an approach for selecting subsets
of candidate microbes for testing in synthetic communities.
In this paper, we present a framework for selecting candidate sets

of functionally important plant-associated microbes based on
network analysis of microbiomes. This framework serves as a
general guide for interpreting microbiome networks, taking into
account which types of information about the system are and are not
typically available. We illustrate how the observed structure of
networks can be used to explore the possible biological roles of
microbes in plant disease development, biological control, and
biofertilization, as well as microbial taxa that may be targets for
selection in crop breeding. The main objective of this paper is to
develop this framework for evaluating the OTUs of microbiome
networks that are likely to be important for disease management,
and to illustrate the application of this framework to the phyllo-
sphere microbiome of Quercus macrocarpa and the soil and
rhizosphere microbiomes associated with the presence or absence
of infection of wheat by Rhizoctonia solani. Although there are
many limitations to interpreting microbial networks with confi-
dence based on current technologies, this exploratory framework

BOX 1: KEY TRAITS OF NETWORKS

Nodes: Nodes, or vertices, are the individual entities that are

the building blocks of a network. Depending on the system,

microbes, proteins, genes, or agents can be represented as

nodes. In our case studies, nodes are OTUs and, in some cases,

host or pathogen response variables.

Links: Links, or edges, are connections between nodes in a network,

which define the relation/interaction between the nodes. In our

examples, links represent the positive or negatives associations

between taxon frequencies.

Node degree: A node’s degree is the number of links between

itself and other nodes. The frequency distribution of node

degree provides information about the nature of a network, and

has often been used to infer network robustness.

Module: A set of nodes connected to each other by many links,

while connected by few links to nodes of other groups.

Clustering coefficient: The clustering coefficient is a ratio of the

number of links between the neighbors of a node, and the

maximum number of links that could possibly exist between its

neighbors. The clustering coefficient of a node is always a

number between 0 and 1.

Betweenness centrality: The number of times a node acts as a

bridge along the shortest path between two other nodes. The

betweenness centrality of a node reflects the function of a node

to connect subnetworks.
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outlines steps to identify candidate taxa in a microbiome-based
strategy for disease management and crop improvement.

FRAMEWORK

Despite the utility of network models for capturing and displaying
the complexity of microbial interactions, there are a number of
challenges for their interpretation and for translating these
analyses into disease management strategies. One challenge is
based on the fact that co-occurrence of two taxa may result from
a number of different biological and/or methodological processes.
Several methods for detecting association, such as correlation or
proportionality, have been used, often with filters based on statistical
cut-offs andP value criteria (Bakker et al. 2014; Barberan et al. 2012;
Edwards et al. 2015), or correlationmeasures combinedwith random
matrix theory todefine the thresholdof association (Zhouet al. 2010).
Other methods include those in SparCC, designed to reduce the
spurious correlation associated with compositional bias (Friedman
andAlm2012;Kurtz et al. 2015), and local similarity analysis,which
evaluates the temporal association of species and environmental
variables (Ruan et al. 2006). Each method used to define an
association provides a different perspective; thus, careful interpre-
tation should take into account the caveats of each mathematical
approach, as well as the characteristics of the data type evaluated.
In this framework, we first discuss general considerations for

interpreting microbiome networks, such as methods for defin-
ing whether links exist, the question of whether links represent
biological interactions or shared niches, and compositional bias.
Second, we discuss four scenarios for interpreting microbiome
networks to identify useful taxa: general analyses of network
structure, host-focused analyses, pathogen-focused analyses, and
disease-focused analyses. In each scenario, the goal is to identify
candidate taxa that may have particularly important roles in plant
health, and thus serve as useful components of a synthetic commu-
nity to support plant health. Two case studies illustrate the applica-
tion of these analyses.

General considerations for interpreting microbiome networks.
A natural question about links in a network of OTUs is whether
they represent biological interactions, or environmental prefer-
ences detected because of the sampling scheme.We illustrate how
detected links may indicate a mixture of biological interactions
and niche preferences, when networks are evaluated with links
based on proportionality or correlation (Box 2). For purposes of this
illustration, the biological interactions and habitat preferences of
each taxon are known a priori (in contrast to most microbiome
studies). The choice of which environmental conditions to sample,
and at what scale, yields different network structures (as do different
choices about definitions of association). For example, no link is
detected between D and E when sampling is solely from diseased
plants, becauseD andE both have consistently too low a frequency to
be detected in these samples. However, D and E’s shared niche
produces a positive link when sampling includes both diseased and
healthy plants, because D and E both have an undetectable frequency
in diseased plants and both have a consistently high frequency in
healthy plants (Box 2). Thus, cautious interpretation of networks is
essential, keeping in mind the different mechanisms by which a link
can be generated from data.
The majority of published studies of microbiome networks

appear to focus on positive correlations among taxa. One important
reason studies may avoid negative correlations is to avoid the pro-
blem of compositional bias. Using current technologies, researchers
typically evaluate the frequency of anOTU, the number of sequences
for the OTU divided by the total number of sequences obtained in the
sample, rather than absolute abundance. As a result, if a common
taxon increases in abundance in a sample, there will be an observed
decrease in frequencies for many other taxa, even if their (unknown)
abundance remains unchanged. Interpreting negative correlations is
more problematic because of this compositional bias. Yet, these

negative correlations are key to understanding biological control and
disease suppression. In this framework, we take the approach that
negative correlations are important for identifying candidate taxa,
where someproportion of taxawill not “panout” in further evaluation
for diseasemanagement, because theywere originally identified only
due to compositional bias or because they consistently occupied
different niches than pathogens.
Two other important issues for interpretation are directionality

and the distinction between correlation and partial correlation.
Networks are directed if links are associated with a direction. For
example, taxonAmight benefit taxonB,while taxonBhas no effect
on taxon A, and this could be indicated in a network by an arrow
leading from A to B, without any reciprocal arrow from B to A.
When networks are constructed based on correlation, the di-
rectionality will typically be lost, and there will simply be evidence
for a positive association between A and B. Bayesian network
analysis has the potential to detect more information about direc-
tionality in relationships among taxa (Darwiche 2009). The ability of
Bayesian network analysis to deal with conditional probabilities also
provides the potential to better discriminate cases where A affects B
only through effects on C compared with A having a direct effect on
B. However, for current microbiome data, the number of responses
(OTU frequencies, etc.) is typically much greater than the number of
samples, and this makes fitting Bayesian networks impractical for
complete microbiome networks until larger sample sizes are routinely
available.
Finally, it is also important to keep inmind that the most important

taxa for plant health may appear not to have any links to other taxa,
nor to have correlations with plant or pathogen performance. In
observational studies, the absence of any links or correlations can
occur if the sampling distribution of frequencies for a taxon is too
limited, such that there is not enough range in frequency to evaluate
associations. For example, if a taxon is always present in samples at a
consistently high frequency, no associations will be detected, even if
the absence of that taxon would have major effects.

General network analysis. In many analyses, the evaluation
of a soil or plant-associated community is exploratory, and not
closely related to specific plant outcomes or involving known
pathogens. In this case, there may be interest in maintaining the
existing microbial community, under the assumption that it is a
desirable community. What are candidate taxa that may be impor-
tant to the maintenance of structure and function of a community?
In a network where links represent positive associations (Box 3
and Fig. 1A), some taxa may have limited importance from
the standpoint of maintaining network structure. Guimera and
Amaral (2005) described an approach to categorize nodes into
functional groups based on the modular structure of networks,
applying this approach to metabolic networks for different
organisms. Peripheral taxa have few links to other taxa. Modular
hub taxa are highly connected within a module. Connector taxa
provide a link among multiple modules. Network hub taxa are
highly connected both in general and within a module. From
the standpoint of this general structure, the taxa that may be most
important for maintaining a network are network hubs, connectors,
and, perhaps secondarily, modular hubs. In addition to the key
nodes, negative associations may also have a role in community
resilience (Shade et al. 2012), despite the difficulty in assessing
negative associations using current technologies.
Modular hubs may be community components that facilitate the

stable occurrence of many other taxa. These other taxa may possess
attributes that we find desirable for either growth promotion or
integrated pest management, in some cases. The hubs themselves
need not be the organisms with desirable traits. Rather, the modular
hubs may be the foundation species—or keystones—whose pres-
ence supports the establishment and growth of other taxa that may
possess the desirable attributes. Module hubs may be important
candidate taxa for synthetic communities in experiments designed
to evaluate plant responses or tomaintain plant productivity. Recent
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studies (Agler et al. 2016) showed that plant responses to other
microbes may be through a hub node, where a hub node maintained
microbial diversity. One of the hub nodes observed was a patho-
gen, illustrating both the importance of the network structure for
community stability, and the fact that community stability will not
always be desirable for plant health.

Host-focused network analysis. In other analyses, a plant
variable (or variables) such as yield will be part of the data set, and
can be represented as a node in the network of variables. Analyses to
assess potential biofertilizer components would exemplify this
application, aswell as identification of “subclinical” parasites, plant
antagonists, or previously unidentified pathogens. In this case, the
general network analysismay still be of interest, but particular focus
is likely to be on the taxa that are directly or indirectly linked to the
plant variable of interest. Approaches analogous to the analysis of

quantitative trait loci may be useful for identifying important
taxa, particularly for direct effects (Garrett et al. 2012). In a
network representing only positive associations, all those taxa
that are directly or indirectly linked to a desirable plant variable
may be candidate taxa. However, as the path between a taxon and
the host response node runs through more and more other taxa,
the probability that some links are artifacts increases. In a net-
work representing both positive and negative associations, star
network motifs offer a simple interpretation for candidate taxa,
but motifs such as lines are more complicated (Fig. 1B).

Pathogen-focused network analysis. When information about
the frequency of one or more pathogens is available, the analysis is
similar to the host-focused analysis, except that generally higher
values of the pathogen response variables will be undesirable. Thus,
in a network representing only positive associations with the

BOX 2

Illustration of how biological interactions and niche preferences may be detected when networks are evaluated with links based on
measures of association such as correlation or proportionality. Nodes A to E represent five hypothetical taxa, and ii to iv represent three

hypothetical sampling scenarios.

(i)Underlying biological interactions and niche preferences, which will typically not be known. Taxa A, B, and C are abundant enough

when hosts are diseased to be detected in samples, and Taxa D and E are abundant enough when hosts are healthy to be detected in samples. A

and B have a positive biological interaction, B and C have a negative biological interaction, while D and E lack a biological interaction.

(ii) Estimated links when sampling diseased hosts. A and B have a positive association, and B and C have a negative association based on

biological interactions; A and C may have a negative link if considering simple correlation, or no link for conditional correlation. (D and E are not

detected in samples.)

(iii)Estimated links when sampling healthy hosts. D and E have no link because only a single type of environment is being sampled and there is no

biological interaction. (A, B, and C are not detected in samples). Sampling in a single environment could tend to result in D and E always being present

at high frequency, such that there would be no correlation to detect across samples.

(iv)Estimated links when sampling both diseased and healthy hosts. A and B have a strong positive link, based on both shared niche and

biological interaction; A and C, and B and C, have a positive association because of a shared niche, but a negative influence from biological interaction:

thus, whether the estimated correlation is positive or negative depends on the relative strength of biological interactions and niche preference; A, B,

and C all have negative links with D and E based on niche; D and E have a detectable positive association because they occur at too low a frequency

to be detected in diseased hosts, and both occur at high frequency in healthy hosts.
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pathogen response variable, therewill be no candidate taxa (Fig. 1B, in
a casewhere the green node is a pathogen fitness variable, in a positive
star). Instead, the candidate taxa will show up in a network represent-
ing both positive and negative associations. This type of analysis
may be most important when studying pathogens that can persist in
the absence of a particular host (or when host data are simply lacking).

Disease-focused network analysis. System interpretation
is strengthened when both host and pathogen information are
available, and ideally information about disease. Candidate taxa are

those with positive associations with desirable host responses and
negative associationswithpathogen frequency or level of disease.We
illustrate example scenarios for healthy and diseased host states,
where the interactions among a pathogen and other microbes are
highlighted (Box 3). In this case we consider the diseased state to
be associated with reduced plant yield or performance, while the
healthy state is associatedwith higher yield and performance. This
diagram indicates how diseased or healthy states are often a result
not only of a pathogen’s direct effects, but also of the indirect

BOX 3

Plant yield “Y” (green node) represented as a function of microbial interactions when a pathogen taxon “P” (gray node) is introduced.
Dark blue nodes represent microbes that are directly beneficial to the plant. Medium blue nodes represent microbes that are indirectly beneficial

to the plants via their effects on other microbes. Light blue nodes represent microbes antagonistic to the pathogen, whereas red nodes

represent microbes that are beneficial to the pathogen. The size of the node represents the abundance of that taxon. Blue links indicate a

positive effect and red links indicate a negative effect, where the direction of the arrow indicates the direction of the effect. i, ii, and iii represent

three hypothetical scenarios reflecting plant states.

(i) Scenario with high yield, reflecting a relatively healthy state. The plant is in a relatively healthy state as a result of microbial interactions.

Although a pathogen is present in the system, it is suppressed due to the activity of beneficial and antagonistic microbes. The network

indicates the topological function of the microbes, which may provide some guidelines in selecting microbes for biofertilization. For example,

one microbe directly benefits the plant (G1) and functions as a connector between indirectly beneficial microbes B0 and B1 and the plant.

Similarly, indirectly beneficial microbe B2 suppresses microbes (D0 and D1) that are directly beneficial to the pathogen.

(ii) Scenario with one pathogen causing a disease in a plant. There is a severe decrease in plant yield Y due to pathogen P. Finding a single

antagonistic microbe specific to a single pathogen species would have been considered a reasonable strategy in early approaches to biocontrol.

However, selecting only a single biocontrol agent fails to incorporate the potential roles of the whole microbial community in disease etiology,

and thus may be less successful and sustainable. This figure describes a scenario in which a single pathogen species causes a disease in

isolation, which may prove to be true for few pathogen species as microbiomes are better understood.

(iii) Scenario with low yield reflecting a diseased state. In this case, considering the whole network of microbial interactions suggests that the

diseased state is not only a function of a single pathogen, but results from a perturbation in the community. Compared to the first scenario, some of

the beneficial taxa (A0, G0, and B2) are no longer present, the abundance of the pathogen (P) and pathogen associated taxa (D0 and D1) is

higher, and the abundance of other beneficial taxa (B0, B1, and G1) is lower. In this scenario, a more effective approach to designing

biocontrol agents may be not only to target the pathogen, but also to target the friends of the pathogen on one hand, while supporting

the enemies of the pathogen on the other hand–applying the old saying “the enemy of my enemy is my friend”. In this hypothetical

scenario, a microbial assemblage consisting of potential taxa to inhibit both the pathogen (P) and the microbes that are directly beneficial

to the pathogen (D0, D1), and to support the microbes that support the plant, such as G0 and G1, may provide an effective disease

control strategy.
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effects of microbial interactions at a community level. While there
may be scenarioswhere a single pathogencauses a diseasewithout the
influence of othermicrobial taxa, asmicrobial communities are better
understood this may prove to be the exception rather than the rule.
Identification of candidate taxa from this framework, for disease
management or biofertilization, is basedon thewhole set ofmicrobial
interactions and their network topologies.

CASE STUDY METHODS

We illustrate the framework for identifying candidate taxa using
observed microbiome data, in some cases in combination with
hypothetical data for the sake of illustration. The microbiome data
are typical current data sets in the sense that they include the rela-
tive frequency of a large number of OTUs, where there is some
taxonomic information associated with most OTUs but little or no
information about function.

Oak phyllosphere fungal communities. Sampling and
molecular processing. We evaluated data previously described in
Jumpponen and Jones (2010), by reanalyzing the sequence library
using MOTHUR (Schloss et al. 2009). In these published analyses,
the authors evaluated seasonal dynamics of fungal communities

present in the leaves of Quercus macrocarpa Michx. (bur oak) in
isolated stands located in urban and nonurban sites in and outside
of the city of Manhattan, Kansas. The study identified distinct
temporal dynamics in the fungal communities. The methods, includ-
ing detailed stand location information and the sampling strategy,
have been described previously. Briefly, leaf samples were collected
from 70 individual oak trees, half from urban areas and half from
rural sites. The previous publication described responses in fungal
diversity and community composition in the context of temporal
dynamics and land use (with no network analysis). In the current
analyses, we applied the framework described above and treated
each tree sample as representing an independent experimental unit
to build a fungal co-occurrence network.
The details of sample processing have been described in

Jumpponen and Jones (2009, 2010). Briefly, the total DNA was
extracted from leaf disks (MOBIO UltraClean Soil DNA Isolation
Kit) in a FastPrep tissue homogenizer. The DNA extracts were
PCR-amplified with ITS1F and ITS4 primers (Gardes and Bruns
1993) combining platform specific A-primer and B-primer for 454-
GS-FLX sequencing of the Internal Transcribed Spacer 2 (ITS2)
region. The primers included sample-specific Molecular Identifier
(MID) tags that allowed sample separation postsequencing.

Fig. 1. Illustration of potential network structures and interpretations. A, A network with links that represent positive associations, illustrating nodes that can be
classified as a peripheral, a modular hub, a connector, and a network hub. B, Network motifs that may be observed in plant-focused network analyses, and the
candidate taxa identified in them. Green nodes represent a desirable plant response variable, blue nodes indicate microbial taxa with positive direct or indirect
associations with the plant response, and red nodes indicate microbial taxa with negative direct or indirect associations with the plant response. The darkest shaded
blue or red nodes indicate direct associations with the plant response (“first degree association”), while lighter shaded blue or red nodes indicate indirect
associations with the plant response (“second degree or third degree associations”). (Note that if, instead of desirable host responses, the green nodes were to
represent an undesirable response such as pathogen frequency, then the candidate taxa would be those with a negative association that are red). C, Triad analyses
representing possible subnetwork structures among sets of three taxa (motifs). Considering (i) no co-associations within the triad, (ii) one pair of operational
taxonomic units (OTUs) co-associated within the triad, (iii) two pairs co-associated within the triad, or (iv) all three OTUs positively co-associated within the triad.
Blue links represent positive association.
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Bioinformatics and sequence processing. The sequence data
from the raw file (.sff) were curated using theMOTHUR pipeline
(v.1.35.1; Schloss et al. 2009) following the steps as outlined in
454 SOP (http://www.mothur.org/wiki/454_SOP). Briefly, the fasta,
qual, and flow files were extracted from .sff files, denoised, and any
sequences shorter than 200 base pairs (bp) or containing ambiguous
base calls or more than eight homopolymers or missing MIDs were
removed from the library. The chimeric sequences were identified
using UCHIME (Edgar et al. 2011) and removed. The sequences
were assigned a taxonomy string using a Bayesian classifier (Wang
et al. 2007) against the UNITE plus INSD nonredundant ITS
database (Koljalg et al. 2013). Uncorrected pairwise distances
between DNA sequences were used to cluster the sequences into
OTUs at 97% similarity using the nearest-neighbor joining
algorithm. Finally, consensus taxon affinities were assigned to the
clusteredOTUs. The number of sequences binning to eachOTUand
sample was recorded in a count matrix with columns as OTUs and
rows as samples in the R programming environment (R Core Team
2015). To minimize the inflation of rare OTUs in the community
analysis, we included only those OTUswith sequence count greater
than 10 (Brown et al. 2015; Oliver et al. 2015), and that occurred in
at least five of the individual samples.

Network construction. To minimize the effects of composi-
tional bias, we used the SparCCmethod. This method evaluates the
variance of the log-ratio for transformed data, rather than the
relative abundance, to infer pairwise relations (Friedman and Alm
2012). Estimation of an average pairwise relation was based on
20 iterations, where the algorithm assumes the absence of a large
number of co-occurring OTUswith strong correlations. Further, the
OTU count data were resampled 100 times, and were used to
generate randomized correlation tables. The randomized correla-
tion matrix was then used to calculate bootstrapped P values for
each pairwise correlation. The resulting correlationmatrixwas used
to define links between OTUs in the network models. Two OTUs
were considered to be linked if their absolute pairwise correlation
was greater than 0.25 and there was strong evidence for the associ-
ation (P < 0.001).
The resulting co-occurrence network consisted of 171 OTUs

represented at the genus level, referred to here as nodes. Of these,
54 were linked nodes and the remaining were unlinked nodes
based on the thresholds defined above, with a total of 102 links. A
total of 78% of the links represented co-abundance, or positive
associations (blue links in Fig. 2) between OTU pairs, whereas
22% represented co-exclusion, or negative associations (red
links). We performed a “general network analysis” in this co-
occurrence network to define the basic topologies of the microbial
communities.

Rhizoctonia bare-patch bacterial communities: Background
on role in disease suppression. In a long-term cropping system
study in Washington State, suppression of Rhizoctonia patch
of wheat was observed over a 15-year period, documented in
Schillinger and Paulitz (2014). This disease, caused by Rhizoctonia
solani AG-8, produces bare patches in the field where the wheat is
severely stunted (Paulitz et al. 2002). It was first described in
Australia, and found in the Pacific Northwest of the United States in
themid-1980s. The pathogen infects the seminal and crown roots of
wheat and barley, but can also attack broadleaf crops. Unlike most
soilborne diseases, the spatial distribution in the field can be easily
observed. The disease can be a problem in no-till or direct seeding,
especially when tillage is stopped during the conversion from
conventional to no-till. In the cropping system rotation study which
started in 1996 (Cook et al. 2002), patches were observed three
years after the plots were converted to no-till. Over the next 10
years, the patches were mapped with a high-resolution GPS. New
patches appeared from one year to the next, some patches persisted
over a number of years, but other patches disappeared (Schillinger
and Paulitz 2014). In addition, the patch area started to decline in
year 8 and declined to almost zero by year 11. Before the decline

was complete, in 2008, 2009, and 2010, we sampled from replicated
plots in the continuous wheat rotation. We sampled bulk and
rhizosphere soil from diseased patches, adjacent healthy areas, and
patches that had disappeared. DNA was extracted and ampli-
fied with the V3 region of the bacterial 16S ribosomal RNA gene,
and pyrosequenced (454) as described by Yin et al. (2013). We
hypothesized that bacterial communities in the diseased areas and
the healthy areas of the field would differ. The initial microbiome
analyses (Yin et al. 2013) sought to identify the full spectrum of
bacteria that could be associated with bare patch disease
suppression. The new network analysis of these data, presented
here for the first time, was aimed at determining the relationships
among these bacterial populations. Although many of the trends
previously identified by analysis of variance were observed,
network analysis provides a more detailed view of the relation-
ships among the communities and identifies a set of candidate
taxa based on interactions that could potentially be used for disease
management.
Using a generalized linear model of the relative frequencies of

OTUs in samples from healthy and diseased plants, we observed
bacteria in the class Acidobacteria and the genusGemmatimonas in
higher frequencies in the rhizosphere of healthy plants outside the
diseased patches, whereas Dyella and Acidobacteria subgroup
Gp7 occurred at higher frequencies in recovered patches. In
contrast, Chitinophaga,Pedobacter,Oxalobacteriaceae (Duganella
and Massilia), and Chyseobacterium were more frequent in the
rhizosphere of diseased plants within the patches. These trends
were verified in soils using qPCR. We also cycled soils in the
greenhouse by inoculating themwith R. solaniAG-8 and analyzing
bacteria in rhizosphere and bulk soils.Weverified that the same taxa
from diseased rhizospheres accumulated in the greenhouse. Finally,
we isolated one of these bacteria,Chryseobacterium soldanellicola
and demonstrated its biocontrol activity against R. solani in the
greenhouse, completing Koch’s postulates of biological control,
going beyond simple correlative studies (Yin et al. 2013).

Bioinformatic and sequence processing. Bacterial commu-
nity data (V3 region of the 16S) from the 2008 samples described in
Yin et al. (2013) were reanalyzed to generate an OTU table for co-
occurrence network construction. Briefly, sequences were removed
if theywere shorter than 100 bp in length, hadmore than 2 bp primer
mismatches, contained more than 1 bp barcode mismatches, had
greater than 2 ambiguous bases, or had a homopolymer run greater
than 7 bp long. The resulting 142,851 high-quality sequences
were binned into OTUs at 97% similarity using an open-reference
with subsampling strategy using the pick_open_reference_otus.py
pipeline in QIIME (Caporaso et al. 2010) with default settings
and using the greengenes_13_8 release as a reference. Chimeric
sequences were identified with ChimeraSlayer and removed, along
with any nonbacterial OTUs or those identified as mitochondria or
chloroplasts. After singleton OTUs were discarded the OTU table
was rarefied by randomly subsampling sequences at the lowest
count available for a single sample.

Network construction. Because microbial community data are
sparse (have high numbers ofOTUswith ‘0’ counts), the rarefiedOTU
table was filtered to remove any OTUs with a total abundance of less
than 10 sequences across all samples, and OTUs present in less than 5
of the individual samples. The resulting data set consisted of 1371
OTUs. The microbiome network was constructed using SparCC to
identify links, where 133 OTUs were involved in either coabundance
(positive associations represented by blue links in Fig. 3) or
coexclusion (negative associations represented by red links) based on
a threshold ofP < 0.001 and an absolute pairwise correlation of >0.60.
The resulting correlations among OTUs were graphed as a network
using the igraphpackage (Csardi andNepusz 2006) inRandvisualized
in Gephi (Bastian et al. 2009).

Applying the network analysis framework. General network
analysis: Modularity in the oak phyllosphere. A module is a set
of nodes with a large number of inter-connecting links, but few
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links to nodes of other groups. Modules were detected using the
netcarto function in the rnetcarto package in R (Doulcier and
Stouffer 2015). This function is based on simulated annealing
optimization, identifying modules by maximizing the network
modularity. Simulated annealing randomly selects the local solu-
tion and thus requires no prior input about the anticipated number
and size of a module. At each iteration, assignment of OTUs into a
module and role varies due to the model stochasticity. Thus the
evaluationwas performed in 200 iterations, and the consensus result
from the 200 iterations was evaluated. The nodes belonging to
specific modules were assigned roles in the network structure as
described by Olesen et al. (2007), with the slight modifications
described in Guimera andAmaral (2005). The observed nodes were
classified as peripherals, connectors, module hubs, or network hubs
based on within-module degree and among-module connectivity.
Both positive and negative links were included in the analysis,
reflecting the potential for both types of association to influence
stability. Nodes with within-module degree greater than 2.5 were
classified as hubs and less than 2.5 as non-hubs. Based on the level
of among-module connectivity, the hub nodes were further
designated as network hubs (among-module connectivity >0.62)
and module hubs (among-module connectivity <0.62), whereas the
nonhubs were designated as connectors (among-module connec-
tivity >0.62) or peripherals (among-module connectivity <0.62).
Host-focused network analysis. We illustrate a hypothetical host-

focused analysis by inserting a hypothetical host response node
(“photosynthetic rate”) in the oak phyllosphere example, because the
original data did not include a host response. The links to this
hypothetical node were selected simply to illustrate the type of
relationship that might be observed. Most microbiome network
analyses have not included a host response node, but including a host
response node helps visualization for selection of candidate taxa for
contexts such as biofertilization.
Pathogen-focused network analysis. As in the host-focused network

case, we illustrate a hypothetical pathogen-focused analysis by
designating a certain node as a pathogen in the oak phyllosphere,
for the sake of discussion.
Disease-focused network analysis. The Rhizoctonia system was

used to illustrate a disease-focused network analysis where a node’s
direct or indirect associationwith the presence or absence of disease
was the focus of analysis. Taxa linked through positive or negative
associationwith the presence of diseasewere identified as described
above. This data set included information about the presence or
absence of disease, but not the level of disease. A node representing
“disease” was introduced, where positive (blue) or negative (red)
links to that node indicate association with the presence or absence
of disease.

CASE STUDY RESULTS

General network analysis: Oak phyllosphere. The co-
occurrence network of the oak phyllosphere fungal community
(Fig. 2A) had modularity 0.132. On average only 32% of the total
links were between themodules, and themajority of the links were
within the modules (68%). On average each module consisted of
7.14 ± 1.7 (mean ± SE) nodes, whereas the number of nodes in
each module ranged from 2 to 13. In total 7 modules with nodes
belonging to bothAscomycota and Basidiomycotawere observed.
The entire fungal network had an average path length of 3.04 with
average node degree 1.89.
Each of the nodes that occurred in a module was assigned a

role based on its connectivity with other nodes in the network.
The majority (91%) of the linked nodes were peripheral, and
further classified as ultra- and non-ultra-peripheral nodes based
on among-module connectivity. A total of 65% of the peripheral
nodes were ultra-peripheral (among-module connectivity = 0), and
the remaining 35%were non-ultra-peripheral (0.62> among-module
connectivity >0), indicating that these nodes were linked within their

ownmodule but not with othermodules. Only one node, belonging to
the genus Aureobasidium (order Dothidiales), which made up 11.4%
of the total number of sequences and was the second most abundant
taxon, occurred as a connector for thewhole network. The connector
node represents a node with a high network betweenness value, and
can thus function as a bridge between modules. The phyllosphere
fungal community lacked a network hub (for the set of thresholds
evaluated here). Such a node would have had high within-module
degree and among-module-connectivity, and could represent a
supergeneralist taxon.

Host-focused analysis: Oak phyllosphere. In this hypothet-
ical scenario (Fig. 2C), 11 nodes are positively and directly
associated with the host response variable (photosynthetic rate),
whereas 3 nodes are directly negatively associated. The majority
of the other nodes are also indirectly associated with photosyn-
thetic rate, where those with second degree associations (through
one other OTU) or third degree associations (through two other
OTUs) are also indicated (Fig. 2C). The differences in node degree
among the nodes with direct links to the host response may reflect
the relative importance of the nodes in maintaining the current
network. Those taxa with the most direct positive links to the host
response would be the most likely candidate taxa for such
applications as biofertilization, potentially along with those taxa
with the most important roles as hubs and bridges for candidate
taxa. Hub nodes may be key in mediating interactions among
other microbes, stabilization of microbial diversity and host and
microbe interactions (Agler et al. 2016; van der Heijden and
Hartmann 2016). Similarly, exploring strategies to control the
nodes with direct negative associations to host response vari-
ables may support disease management or crop improvements. In
addition to direct (first degree) associations, exploring second,
third, or higher degree associations could support more compre-
hensive or community-level management methods. Higher degree
associations present challenges for interpretation, because of the
potential artifacts as lines become longer, and the potential for
mixed types of associations (negative association with the host
response node through one line, and positive through another line;
Figs. 1B and 2).

Pathogen-focused analysis: Oak phyllosphere. This hy-
pothetical scenario (Fig. 2D) illustrates a case with taxa both
positively and negatively associated with a pathogen. The taxa that
have direct or indirect negative associations with the pathogen are
potential candidates for biocontrol agents. For example, those taxa
with positive associations with other taxa that have negative
associations with the pathogen are also potentially beneficial,
although the longer the chain of links is, the higher the uncer-
tainty becomes. These positive and negative associations with
the pathogen node could result from niche modulation by the
pathogen or other microbes, potentially through effects on host
defense mechanisms altering the local niche and the potential for
colonization by other microbes (Chou et al. 2000; Mukhtar et al.
2011; Voegele et al. 2005). Nodes colored dark, medium, and
light blue represent first degree, second degree, and third degree
neighbors for the pathogen node (Fig. 2D), respectively. The node
degree of the potential biocontrol agents varied among the linked
nodes, as indicated by node color density (Fig. 2A). Understanding
the role of nodes in the network could further help in selecting
effective biocontrol agents. For example, if a taxon is not only
negatively associated with the pathogen, but also is a bridge node
to a positively linked module, this could suggest a key role.
Finding key nodes and hub nodes supports prediction of ecolog-
ical roles of nodes/taxa, although the rationale for selecting such
taxa becomes complex when key nodes or hub nodes represent
pathogens (Agler et al. 2016). Thus, when selecting candidate taxa,
it may be possible to target groups that affect pathogens through
multiple pathways, but preserve other microbial interactions, with
the aim of providing an effective pool of microbes for disease
management.
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Disease-focused analysis: Rhizoctonia system. The mod-
ules observed were phylogenetically diverse and consisted of
Gram-positive and Gram-negative taxa belonging to many distinct
families. Although taxa with a direct negative or positive
association with disease may be detected without the use of
network analyses, this analysis offers insight into the inter-
relationships among the diverse array of taxa coexisting in
disease-prone or healthy soil communities. Specifically, potentially
plant-beneficial taxa tended to co-associate in two distinctmodules,
whereas taxa associated with diseased patches co-associated to
form a single module. Together, this suggests that taxa associated
with diseased or healthy plant states respond to similar environ-
mental conditions or act together as cohesive consortia to impact
plant health. However, many of the detected associations could
result from sampling (due to temporal and spatial resolution), PCR,
and statistical bias, so that follow-up experiments are needed to test
candidate taxa.
Three large interconnected modules were observed, along

with three smaller unlinked modules (Fig. 3). In this network, the

OTU frequencies in the rhizosphere are indicated by the size of
the nodes—larger diameter circles indicate taxa more abundant
in the rhizosphere. The color of the nodes indicates the
association with the diseased (orange nodes) or healthy (purple
nodes) state.
The large module at the bottom of the figure consists of

rhizosphere taxa associated with diseased plants (patches). This
includes families such as Enterobacteriaceae, Pseudomonadaceae,
Chitinophagaceae, Caulobacteraceae and Flavobacteriaceae. Fla-
vobacteriaceae would include the genus Chryseobacterium, which
Yin et al. (2013) isolated and showed to have biocontrol activity.
In general, this module associated with diseased roots consists
of copiotrophic bacteria. This module is negatively linked to an
Actinomycetales OTU associated with the healthy state and
N1423W (a member of the Gemmatimonadetes). The other large
module in the upper part of the network consists of taxa more
associated with the healthy state and the bulk soil, and includes
Gemmatimonadaceae, Acidobacteriaceae, and the Actinobacteria
families Koribacteraceae, Gaiellaceae and Solirubrobacteriaceae.

Fig. 2. Illustration of network analyses for the oak phyllosphere fungal communities. In the network diagrams, blue and red links represent positive and negative
associations, respectively. Network layouts are based on the Fruchterman-Reingold algorithm in the igraph package, where each node represents an OTU and two
nodes are connected if their frequencies are significantly associated. (Node size does not reflect taxon frequency.) A, General network analysis of the co-occurrence
of oak phyllosphere fungal communities. Node color indicates the node degree for each OTU. The OTU categorized as Aureobasidium, the strongest connector
node, is indicated. B, Partitioning of OTUs according to their network roles. Nodes were divided into four categories based on within-module degree and among-
module connectivity. The blue dashed line represents a threshold value (0.62) for among-module connectivity, and the red dashed line represents a threshold value
(2.5) for within-module degree, as described by Guimera et al. (2005). The standard error bar at each node is based on 200 iterations. (Note that both positive and
negative associations were included in this analysis, in contrast to many applications.) C, A hypothetical host-focused analysis based on the oak phyllosphere
network (A), where, for illustrative purposes, a hypothetical host response variable (photosynthetic rate) is represented as a green node. Blue nodes have a positive
association with the host response, where dark blue nodes have a direct link as first degree neighbors, medium blue nodes have an indirect link through one other
taxon as second degree neighbors, and light blue nodes have an indirect link through two other taxa as third degree neighbors. Other taxa with longer shortest paths
to the host response (fourth degree neighbors, etc.) may also be of interest as candidates, although there will be lower confidence in their role. Similarly dark red,
medium red, and light red nodes represent taxa that are negatively associated with the photosynthetic rate, as first, second and third degree neighbors, respectively.
Nodes colored half red and half blue have a mixed association with the host response node, having both positive and negative higher degree associations. D, A
hypothetical pathogen-focused analysis based on the oak phyllosphere network (A), where, for illustrative purposes, a hypothetical pathogen is represented as a
grey node. For the pathogen-focused scenario, red nodes have a direct or indirect negative association with the pathogen, and may be candidate taxa for biocontrol.
Strategies to limit taxa with positive associations (blue nodes) might also help to reduce pathogen populations.
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These tend to be slower growing oligotrophic bacteria. This
module is linked to a submodule consisting of rhizosphere families:
Burkholderiaceae,Microbacteriaceae andSphingobacteriaceae, some
of which were associated with healthy plants. This analysis also
identified the presence of three smaller unlinked modules. Onewas

represented by rhizosphere-predominant Sphingomonadaceae
associated with diseased roots (orange nodes). Another consisted of
Actinobacteria more predominant in the bulk soil such as Micro-
monosporaceae and Pseudonocardiaceae, which were associated with
healthy roots.

Fig. 3. Disease-focused analysis of soil and rhizosphere taxa positively or negatively associated with infection of wheat by Rhizoctonia solani (diseased patches in
the field). The size of nodes (operational taxonomic units [OTUs]) is scaled by their frequency in the rhizosphere, where larger diameter circles indicate a greater
abundance in the rhizosphere. The color of the nodes is scaled by the association of that OTU with the disease (brighter orange) or healthy (brighter purple) state.
Darker nodes have little difference in relative abundance between healthy and diseased states. The disease state is represented by a large gray node. Relationships
among OTU nodes were assessed using SparCC methods and those between OTUs and the disease state were evaluated using GLMs. Positive relationships are
indicated by blue links and negative relationships are indicated by red links. OTU taxon assignments to the family level are indicated for each node. Where OTUs
could not be confidently assigned to the family level, higher taxonomic assignments (e.g., order, class, or phylum) are indicated.
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DISCUSSION

The four types of network analysis in this framework reveal
different aspects of microbiome networks, and different candidate
taxa for further evaluation. The general network analysis in the oak
phyllosphere identified candidate taxa for maintaining microbial
communities based on their high number of links within and among
modules. The illustration of the host-focused analysis identified
candidate taxa that had direct positive or negative associations to a
desired host response, and others that were only a limited number of
links away from the host response variable. The illustration of the
pathogen-focused analysis showshow it can beused to find candidate
taxa that have a direct negative link to a known pathogen, and others
that have positive links to support the potential pathogen antagonists.
The disease-focused analysis identified candidate taxa positively
associated with the absence of infection by Rhizoctonia solani, and
others positively linked to these. In the host-, pathogen-, and disease-
focused analyses, candidate taxa with direct links to the response
variables can be considered first degree neighbors, which could
represent either candidate taxa for biofertilizationor target candidates
for disease management. These could be discovered in a simple
analysis of associations with the response variables. Including the
network analysis makes it possible to evaluate the candidates that
support these, the second degree neighbors, third degree neighbors,
and so on. Inclusion of these taxa in synthetic microbial assemblages
may increase the stability of biocontrol or biofertilization efforts.
For analyses where there are not obvious response variables aside

fromOTUfrequencies, thegeneral networkanalysis offers ameans to
identify candidate taxa that are potentially important for maintaining
the network as a whole. The majority of the nodes in the oak
phyllosphere data were categorized as peripheral nodes, with one
node categorized as a connector. The modular structure of co-
occurring OTUs suggests diversity in species roles and functionality
(Montoya et al. 2015), as well as in their environmental preferences.
Modularity may suggest niche overlap or common resource
requirements among the co-occurring microbiome taxa, or any of a
number of phenomena in different types of ecological networks. For
example, modularitymay indicate predators and prey that frequently
co-occur in food webs (Kondoh 2008), a convergence in functional
traits among unrelated species (Bascompte et al. 2006) in pollinator-
plant networks (Olesen et al. 2007), and the nonrandom and repeated
association of plants and visiting insects (Dupont and Olesen 2009).
The modules detected in our analysis consisted of both Ascomycota
and Basidiomycota, suggesting their common co-occurrence in this
system, although some patternsmight be influenced by higher primer
specificity toward the Ascomycota (Monard et al. 2013).
The structure of modules in a network may be important for system

stability and functionality (May 1972; Scheffer et al. 2012; Thebault
and Fontaine 2010), but this has been difficult to test for many systems
(Sinha 2005). The majority of the oak phyllosphere nodes were
categorized as peripheral nodes, connected only with other member
nodeswithin amodule, which is sometimes interpreted as evidence for
specialization. Definitions for specialists and generalists differ from
study to study. For example, Barberan et al. (2012) and Collins and
Glenn (1997) described specialist or satellite species based on species
occurrence across samples. Based on network structure, networksmay
include generalists observed as network hubs and connectors, and
specialists observed as peripheral nodes. Nodes that are linked among
the modules may reflect a wider range of habitat and resource use,
although the most generalist taxa will appear more consistently across
samples in observational studies, and thus may not be detected in
networks of co-association. Network-based categorization of taxa
as generalists or specialists may have evolutionary significance in
some cases. Connector nodes in metabolite networks may be
conserved metabolites that are involved in essential biochemical
pathways and conserved across multiples species (Guimera and
Amaral 2005). It is possible that connector and hub species may
represent multifunctional taxa.

A pathogen-focused network analysis can reveal how second
degree, third degree, and higher associations with pathogen
abundance can influence disease risk. For some systems, such as
disease-suppressive soils, these associations may be key to manage-
ment outcomes. In the future, as technologies for characterizing
microbiomes become common and less expensive, network analyses
may become a standard procedure to identify key taxa for managing
many plant pathogens. Pathogen-focused network analysis could also
be useful for surveying new microbes from natural habitats with
potential for identifying novel antibiotics or chemicals.
The results of the network analysis of the Rhizoctonia system

support the hypotheses posed in Yin et al. (2013) that taxa closely
associated with the diseased patches were copiotrophic rhizosphere
bacteria adapted to large amounts of root exudates coming from
diseased roots. The destruction of roots by Rhizoctonia infection
probably releases not only more exudates, but other cell wall and
cytoplasm components that can be used by these bacteria, which
include genera such as Flavobacterium and Pseudomonas, pre-
viously implicated in biological control. Chitinophaga has been
found as one of the most abundant taxa in wheat soils in other
studies, and may be digesting chitin from the fungal biomass. In the
healthy/recovered patches, this large food base is not available, so
these areas are dominated by oligotrophs more adapted to small
nutrient fluxes in the bulk soil. However, unlike previous analyses,
the network analysis identified three other smaller modules or
groups - a rhizosphere predominant group linked to the larger bulk
soil/healthy module (which was not linked to the rhizosphere/
diseased module), a smaller module consisting of rhizosphere
Sphingomonadaceae associated with diseased roots, and an
Actinobacteria module of bulk soil families associated with healthy
roots. Interestingly, OTUs in the same family can be associated
with healthy or diseased roots, indicating a tremendous amount of
functional diversity within families. For example, within the
Pseudomonadaceae the ecological niche and antibiotic phenotypes
of Pseudomonas species can vary widely, as found in a study in the
same area of Washington State (Parejko et al. 2012). Thus, it is not
surprising that one taxon could be associated with both disease
states. Many copiotrophs may build up on leaky roots, but we
hypothesize that only those producing antifungal compounds or
that have some other antagonistic function will suppress disease.
Detailed functional studies of microbial interactions will be a
crucial next step to testing hypotheses from network analyses about
candidate taxa that may play important roles in suppressing or
facilitating plant disease. As microbiome networks are better
understood, it may be possible to evaluate and predict the shifts over
time in taxon frequency driven by biological interactions, shifts
that ultimately lead to disease-suppressive soils.
The primary goal of our framework is to usemicrobiome network

studies to provide guidance for selecting a useful number of
candidate taxa for biological control, biofertilization, and microbe-
associated crop breeding. Using current technologies, there remain
challenges in interpretations for these networks. One important
source of potential error in interpretation ofmicrobiome networks is
compositional bias, where an increase in abundance of one taxon
may lead to reduced frequencies for other taxa, even if the
abundance of the other taxa remains unchanged. As technologies to
evaluate abundance improve, this problem may ultimately be
removed. Next-generation sequencing (NGS) platforms have been
evolving rapidly in the past decade. For example, single molecule
sequencing tools such as the Oxford Nanopore Technologies
MinION (https://www.nanoporetech.com/) have great promise for
producing data that can potentially not only characterize commu-
nities, but also provide reasonable estimates of the relative
abundance of organisms residing in complex environmental samples.
Proposed strategies include direct amplicon preparations follow-
ing Oxford Nanoporemethods (Kilianski et al. 2015) to obtain long
nanopore reads from low input template DNAs or “Intramolecular-
ligated Nanopore Consensus Sequencing” (Li et al. 2016) similar to

Vol. 106, No. 10, 2016 1093

http://www.nanoporetech.com/


PacBio sequencing of circularized templates to reduce sequencing
errors (Lou et al. 2013; Travers et al. 2010). These reports are
encouraging as they provide proof of concept, paving the way for
single molecule sequencing that might provide abundance data
for improved network analyses.
In the case studies, we chose different correlation thresholds for

the two different data sets, while using the same P value threshold
(P < 0.001). The choice of thresholds wasmade to create networks to
identify a practical number of candidate taxa that could be evaluated
further in follow-up experiments. The choice of thresholdswill have
important effects on which candidate taxa are selected. As more
attention is paid to the arbitrary aspects of defining thresholds for
statistical significance (Madden et al. 2015), alternatives include
the potential to use sensitivity analysis to identify those taxa that are
candidates across a range of threshold values. Thresholds are also
used to define OTU size based on the sequence count, as well as in
defining the pairwise association between two OTUs, and in
defining the level of significance based on P values. Sensitivity
analysis could help to capture the relation between OTUs across
a range of thresholds, as opposed to a single set of thresholds,
potentially providing results that are more robust.
Selection of candidate taxa involves a number of decisions that

may decrease the chance of artifacts and identification of spurious
associations. In our analysis, we chose a method that reduces
compositional bias. We also used criteria to select OTUs based on a
sequence count greater than 10, and presence in at least five of the
replicates. Relatively rare taxa are likely to be associated with lower
statistical power in tests of associations, and, from a practical
standpoint, may be difficult as candidates in follow-up experiments.
Still, many candidate taxa will be identified as a consequence of
statistical error and biases associated with PCR and sequencing.
Follow-up experiments can be designed for evaluating candidates

based on concepts similar to Koch’s postulates, where candidate
assemblagesaredeployedasacompletegroupandas targetedsubsets, to
evaluate the performance of the assemblage and the importance of the
role of individual taxa to the assemblage performance. If the goal of
follow-up experiments is pragmatic development of successful bio-
control, a limited number of assemblages might be evaluated, based on
consistent performance in sensitivity analyses. If the goal is to better
understand and map the microbiome network structure, experimental
assemblages could be designed to test network-based hypotheses about
causality in relationships among taxa and outcomes for the host or
disease.Becausesome important taxamaybepresent at consistent levels
in observational studies, and thus “invisible” in network analyses, itmay
be important to include experiments in which their abundance is altered
to have a more complete understanding of the network. In the future,
with advanced and less expensive sequencing technology supporting the
analysis of taxon abundance rather than merely frequency, network
analyses at multiple time points with a higher number of replicates will
contribute to better understanding of the dynamics of microbial co-
occurrence and factors contributing to community resilience (Shade
et al. 2012). Such analyseswould also contribute to understanding shifts
in microbial communities over time, or as a function of experimental
treatments, and could contribute to understanding directionality of
interactions among taxa, and the functional roles of taxa.
Another approach to identifying key relationships among taxa,

beyond pair-wise associations, is to consider patterns of association
within clusters of OTUs such as triads (sets of three OTUs) across
communities, and specifically the patterns of relative abundance of
distinct cluster motifs. Thus, as an example, rather than consider-
ing networks defined by the presence of significant pairwise co-
associations, triad analyses focus on characterizing subnetwork
structures among sets of three taxa (motifs). Considering only positive
co-associations, there are four possible triad motifs: (i) no co-
associationswithin the triad; (ii) one pair ofOTUsco-associatedwithin
the triad; (iii) two pairs co-associated within the triad; or (iv) all three
OTUs positively co-associated within the triad (Fig. 1C). Including
both positive and negative co-associations or directed interactions

expands the number of possible motifs, and can provide more detailed
insights into the ecology of interactions within complex networks
(Schlatter and Kinkel 2014; Tran et al. 2013). Quantifying the relative
abundance of distinct triad (or larger) motifs within communities, and
among communities having different disease or disease-suppressive
states, offers the potential to capture higher-order structure within the
microbiome and to generate hypotheses about the roles of distinct
network motifs in generating community functional activities.
Alternatively, characterizing the patterns of representation for individ-
ualOTUs indifferent triadmotifs canprovideuseful informationon the
role of specific OTUs within the community.
The networks that are a focus of this paper are based on two-

dimensional adjacency matrices, where entries in the matrices
indicate information about pair-wise interactions. As substantially
greater data volumes become available in typical microbiome
studies, it may become possible to evaluate adjacencymatrices with
three ormore dimensions, including information about associations
between taxa that are conditional on the abundance of other taxa,
and/or conditional on levels of environmental variables. With more
data, inclusion of more environmental variable nodes along with
taxon nodes in microbiome networks, evaluated using Bayesian
network methods (Darwiche 2009), may also make it feasible to
discriminate betweenmicrobial associations based on shared niches
versus associations based on biological interactions. Future greater
data availabilitymay also provide the opportunity to evaluate linked
spatial networks of microbial community movement and spatial
networks of signalingmolecules (Garrett 2012). A strength ofmany
types of network analysis is the use of matrix multiplication to
predict future levels of each network component given current
values (or given scenarios where some values are enhanced). In the
context of microbiome networks, the effects of the abundance of
a candidate microbial assemblage (or a targeted change in its
abundance) on the abundance of other taxa, or on host or pathogen
response variables, could be predicted over time. This type of
analysis would bemost useful if the associations among nodeswere
based on known biological interactions, and the dynamic nature of
these associations in response to factors such as climate change is
understood. With current technological limitations, matrix multi-
plication would propagate the error resulting when associations are
basedmerely on niche preferences or compositional bias. However,
in the future, with greater amounts of higher quality data, analyses of
network-wide responses to changes in the abundance of particular
taxa may become a standard tool for understanding microbiomes.
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