зеркало из
https://github.com/jlind0/multiplex.studio.web.git
synced 2025-10-28 20:54:22 +02:00
updated paper
Этот коммит содержится в:
родитель
363badfc65
Коммит
54f5ccf561
384
ctde.html
384
ctde.html
@ -4,7 +4,9 @@
|
||||
<meta charset="utf-8" />
|
||||
<meta name="generator" content="pandoc" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
|
||||
<title>Combined_Theory_Differential_Equations</title>
|
||||
<meta name="author" content="Jason L. Lind lind@yahooo.com" />
|
||||
<meta name="dcterms.date" content="2024-05-17" />
|
||||
<title>A Theory of the Universe</title>
|
||||
<style>
|
||||
html {
|
||||
color: #1a1a1a;
|
||||
@ -168,6 +170,11 @@
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<header id="title-block-header">
|
||||
<h1 class="title">A Theory of the Universe</h1>
|
||||
<p class="author">Jason L. Lind lind@yahooo.com</p>
|
||||
<p class="date">17 May 2024</p>
|
||||
</header>
|
||||
<h1 class="unnumbered"
|
||||
id="combined-theory-differential-equations">Combined Theory Differential
|
||||
Equations</h1>
|
||||
@ -208,8 +215,8 @@ dynamics.</p></li>
|
||||
| | |
|
||||
| v |
|
||||
+--------------------- [Influences] ----------------+</code></pre>
|
||||
<h2 class="unnumbered" id="differential-equations">Differential
|
||||
Equations</h2>
|
||||
<h2 class="unnumbered" id="a-system-of-differential-equations">A System
|
||||
of Differential Equations</h2>
|
||||
<p>To model the interaction between these components, we can propose the
|
||||
following system of differential equations:</p>
|
||||
<ol>
|
||||
@ -513,5 +520,376 @@ that
|
||||
decreases over time. If you can determine such a Lyapunov function, it
|
||||
can serve as a "measure of energy" in the system, showing how the system
|
||||
evolves and stabilizes over time.</p>
|
||||
<h1 class="unnumbered"
|
||||
id="conceptualizing-mass-in-abstract-systems">Conceptualizing "Mass" in
|
||||
Abstract Systems</h1>
|
||||
<p>In dynamical systems, especially those derived from theoretical
|
||||
constructs, "mass" might be considered a metaphor for a quantity that
|
||||
remains constant or evolves in a predictable manner over time, possibly
|
||||
representing a measure of system "weight," "inertia," or "content" in
|
||||
terms of state variables. Here’s how we might consider "mass" in your
|
||||
system:</p>
|
||||
<h2 class="unnumbered" id="define-mass">Define "Mass"</h2>
|
||||
<ul>
|
||||
<li><p>In the absence of explicit physical properties like volume and
|
||||
density that define mass in classical physics, we might define a
|
||||
conserved quantity based on the system’s state variables and their
|
||||
interactions. This could be a linear combination of state variables
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>R</mi><annotation encoding="application/x-tex">R</annotation></semantics></math>,
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>P</mi><annotation encoding="application/x-tex">P</annotation></semantics></math>,
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>S</mi><annotation encoding="application/x-tex">S</annotation></semantics></math>
|
||||
whose total derivative with respect to time
|
||||
(<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>t</mi><annotation encoding="application/x-tex">t</annotation></semantics></math>)
|
||||
is zero, suggesting conservation.</p></li>
|
||||
</ul>
|
||||
<h2 class="unnumbered"
|
||||
id="formulating-mass-as-a-conserved-quantity">Formulating Mass as a
|
||||
Conserved Quantity</h2>
|
||||
<ul>
|
||||
<li><p>Let’s consider a function
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>R</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">M(R, P, S)</annotation></semantics></math>
|
||||
that we propose as representing the "mass" of the system.</p></li>
|
||||
<li><p>A common choice could be
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>M</mi><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mi>R</mi><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><mi>P</mi><mo>+</mo><msub><mi>c</mi><mn>3</mn></msub><mi>S</mi></mrow><annotation encoding="application/x-tex">M = c_1 R + c_2 P + c_3 S</annotation></semantics></math>,
|
||||
where
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo></mrow><annotation encoding="application/x-tex">c_1, c_2,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>c</mi><mn>3</mn></msub><annotation encoding="application/x-tex">c_3</annotation></semantics></math>
|
||||
are constants that might be determined by the system dynamics to ensure
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\frac{dM}{dt} = 0</annotation></semantics></math>.</p></li>
|
||||
</ul>
|
||||
<h2 class="unnumbered" id="calculating-the-derivative">Calculating the
|
||||
Derivative</h2>
|
||||
<p>Using the given system of equations, calculate the time derivative of
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>M</mi><annotation encoding="application/x-tex">M</annotation></semantics></math>:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mfrac><mrow><mi>d</mi><mi>R</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>P</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>+</mo><msub><mi>c</mi><mn>3</mn></msub><mfrac><mrow><mi>d</mi><mi>S</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\frac{dM}{dt} = c_1 \frac{dR}{dt} + c_2 \frac{dP}{dt} + c_3 \frac{dS}{dt}</annotation></semantics></math>
|
||||
Substituting the differential equations:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><msub><mi>c</mi><mn>1</mn></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>α</mi><mi>P</mi><mo>+</mo><mi>β</mi><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><msub><mi>c</mi><mn>2</mn></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>γ</mi><mi>R</mi><mo>−</mo><mi>δ</mi><mi>P</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><msub><mi>c</mi><mn>3</mn></msub><mrow><mo stretchy="true" form="prefix">(</mo><mi>ϵ</mi><mi>R</mi><mo>−</mo><mi>ζ</mi><mi>S</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\frac{dM}{dt} = c_1 (\alpha P + \beta S) + c_2 (\gamma R - \delta P) + c_3 (\epsilon R - \zeta S)</annotation></semantics></math></p>
|
||||
<h2 class="unnumbered" id="ensuring-conservation">Ensuring
|
||||
Conservation</h2>
|
||||
<p>To ensure
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\frac{dM}{dt} = 0</annotation></semantics></math>
|
||||
for all
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mo>,</mo><mi>P</mi><mo>,</mo><mi>S</mi></mrow><annotation encoding="application/x-tex">R, P, S</annotation></semantics></math>,
|
||||
coefficients
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo></mrow><annotation encoding="application/x-tex">c_1, c_2,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>c</mi><mn>3</mn></msub><annotation encoding="application/x-tex">c_3</annotation></semantics></math>
|
||||
must be chosen such that the terms involving
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>R</mi><mo>,</mo><mi>P</mi><mo>,</mo></mrow><annotation encoding="application/x-tex">R, P,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>S</mi><annotation encoding="application/x-tex">S</annotation></semantics></math>
|
||||
in
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><annotation encoding="application/x-tex">\frac{dM}{dt}</annotation></semantics></math>
|
||||
cancel out. This leads to a system of equations:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><msub><mi>c</mi><mn>2</mn></msub><mi>γ</mi><mo>+</mo><msub><mi>c</mi><mn>3</mn></msub><mi>ϵ</mi></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><msub><mi>c</mi><mn>1</mn></msub><mi>α</mi><mo>−</mo><msub><mi>c</mi><mn>2</mn></msub><mi>δ</mi></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><msub><mi>c</mi><mn>1</mn></msub><mi>β</mi><mo>−</mo><msub><mi>c</mi><mn>3</mn></msub><mi>ζ</mi></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mn>0</mn><mi>.</mi></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{align*}
|
||||
c_2 \gamma + c_3 \epsilon &= 0, \\
|
||||
c_1 \alpha - c_2 \delta &= 0, \\
|
||||
c_1 \beta - c_3 \zeta &= 0.
|
||||
\end{align*}</annotation></semantics></math> Solving this system will
|
||||
give the relations between
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>c</mi><mn>1</mn></msub><mo>,</mo><msub><mi>c</mi><mn>2</mn></msub><mo>,</mo></mrow><annotation encoding="application/x-tex">c_1, c_2,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>c</mi><mn>3</mn></msub><annotation encoding="application/x-tex">c_3</annotation></semantics></math>
|
||||
that make
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>M</mi><annotation encoding="application/x-tex">M</annotation></semantics></math>
|
||||
a conserved quantity.</p>
|
||||
<h2 class="unnumbered" id="conclusion-1">Conclusion</h2>
|
||||
<p>The analysis to find such constants depends on the actual values of
|
||||
the parameters
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ϵ</mi><mo>,</mo></mrow><annotation encoding="application/x-tex">\alpha, \beta, \gamma, \delta, \epsilon,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ζ</mi><annotation encoding="application/x-tex">\zeta</annotation></semantics></math>.
|
||||
If a nontrivial solution exists, then
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>M</mi><annotation encoding="application/x-tex">M</annotation></semantics></math>
|
||||
can indeed be treated as a conserved quantity representing the "mass" of
|
||||
the system in the metaphorical sense. The feasibility and the physical
|
||||
or theoretical interpretation of
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>M</mi><annotation encoding="application/x-tex">M</annotation></semantics></math>
|
||||
depend heavily on the context of the model and how these parameters and
|
||||
variables are understood within that context.</p>
|
||||
<h1 class="unnumbered"
|
||||
id="unified-theory-of-physics-energy-mass-relationship">Unified Theory
|
||||
of Physics: Energy-Mass Relationship</h1>
|
||||
<p>In the quest to achieve a grand unification of quantum physics and
|
||||
general relativity, theorists have long grappled with the challenge of
|
||||
reconciling the incredibly small with the immensely large. Quantum
|
||||
physics elegantly describes the interactions and properties of particles
|
||||
at the subatomic level, while general relativity offers a robust
|
||||
framework for understanding the gravitational forces acting at
|
||||
macroscopic scales, including the structure of spacetime itself. A novel
|
||||
approach to bridging these two pillars of modern physics might lie in a
|
||||
modified interpretation of the energy-mass relationship, specifically
|
||||
through the equation:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><msub><mi>d</mi><mn>1</mn></msub><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msub><mi>d</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">E = d_1 M^2 + d_2 \frac{dM}{dt}</annotation></semantics></math>
|
||||
This equation offers a fresh perspective by incorporating both the
|
||||
traditional mass-energy equivalence and a term that accounts for the
|
||||
rate of change of mass.</p>
|
||||
<h2 class="unnumbered" id="theoretical-implications">Theoretical
|
||||
Implications</h2>
|
||||
<p>The equation
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><msub><mi>d</mi><mn>1</mn></msub><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msub><mi>d</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">E = d_1 M^2 + d_2 \frac{dM}{dt}</annotation></semantics></math>
|
||||
extends the classical equation
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><mi>m</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">E = mc^2</annotation></semantics></math>,
|
||||
posited by Albert Einstein, which asserts that energy is a product of
|
||||
mass and the speed of light squared. The additional term
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">d_2 \frac{dM}{dt}</annotation></semantics></math>
|
||||
suggests that energy is not only influenced by mass itself but also by
|
||||
the rate at which mass changes over time. This concept could potentially
|
||||
integrate the principles of quantum mechanics, where particles can
|
||||
fluctuate in and out of existence and the conservation laws can seem to
|
||||
be in flux at very small scales.</p>
|
||||
<p>In quantum field theory, particles are excitations of underlying
|
||||
fields, and their masses can receive corrections due to virtual
|
||||
particles and quantum fluctuations. This inherently dynamic aspect of
|
||||
mass in quantum mechanics contrasts sharply with the typically static
|
||||
conception of mass used in general relativity. By allowing mass to be a
|
||||
dynamic quantity in the equation,
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">d_2 \frac{dM}{dt}</annotation></semantics></math>
|
||||
could provide a mathematical framework that accommodates the
|
||||
probabilistic nature of quantum mechanics within the deterministic
|
||||
equations of general relativity.</p>
|
||||
<h2 class="unnumbered"
|
||||
id="bridging-quantum-mechanics-and-general-relativity">Bridging Quantum
|
||||
Mechanics and General Relativity</h2>
|
||||
<p>Quantum mechanics and general relativity operate under vastly
|
||||
different assumptions and mathematical frameworks. Quantum mechanics
|
||||
uses Planck’s constant as a fundamental quantity, implying that action
|
||||
is quantized. Conversely, general relativity is founded on the continuum
|
||||
of spacetime and does not inherently include the quantum concept of
|
||||
discreteness.</p>
|
||||
<p>The added term in the energy-mass relationship implicitly introduces
|
||||
a quantization of mass changes, which could be akin to the quantization
|
||||
of energy levels in quantum mechanics. This suggests a scenario where
|
||||
spacetime itself might exhibit quantized properties when mass-energy
|
||||
conditions are extreme, such as near black holes or during the early
|
||||
moments of the Big Bang, where quantum effects of gravity become
|
||||
significant.</p>
|
||||
<h2 class="unnumbered"
|
||||
id="mathematical-unification-and-predictive-power">Mathematical
|
||||
Unification and Predictive Power</h2>
|
||||
<p>One of the profound benefits of this new energy-mass equation is its
|
||||
potential to offer predictions that can be experimentally verified. For
|
||||
instance, the equation implies that under certain conditions, the energy
|
||||
output from systems with rapidly changing mass (like during particle
|
||||
collisions) could deviate from predictions made by classical equations.
|
||||
This could be observable at particle accelerators or in astronomical
|
||||
observations where massive stars undergo supernova explosions.</p>
|
||||
<p>Moreover, the inclusion of the
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><annotation encoding="application/x-tex">\frac{dM}{dt}</annotation></semantics></math>
|
||||
term might also lead to predictions about the energy conditions in early
|
||||
universe cosmology or in black hole dynamics, providing a new tool for
|
||||
astrophysicists and cosmologists to test the integration of quantum
|
||||
mechanics with general relativity.</p>
|
||||
<h2 class="unnumbered" id="conclusion-2">Conclusion</h2>
|
||||
<p>The proposed modification to the energy-mass relationship offers a
|
||||
tantalizing step towards a unified theory of physics. By acknowledging
|
||||
that mass can change and that this change contributes to the energy of a
|
||||
system, the equation
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>E</mi><mo>=</mo><msub><mi>d</mi><mn>1</mn></msub><msup><mi>M</mi><mn>2</mn></msup><mo>+</mo><msub><mi>d</mi><mn>2</mn></msub><mfrac><mrow><mi>d</mi><mi>M</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">E = d_1 M^2 + d_2 \frac{dM}{dt}</annotation></semantics></math>
|
||||
bridges the static universe of general relativity and the dynamic,
|
||||
probabilistic world of quantum mechanics. This approach not only deepens
|
||||
our understanding of the universe but also aligns with the pursuit of a
|
||||
theory that accurately describes all known phenomena under a single,
|
||||
coherent framework. This theory might eventually lead to discoveries
|
||||
that could redefine our comprehension of the universe.</p>
|
||||
<h1 id="cognitive-conceptual-framework">Cognitive Conceptual
|
||||
Framework</h1>
|
||||
<ul>
|
||||
<li><p><strong>Cyber-Mesh</strong>: Represents a network or system where
|
||||
collective cognitive activities are interconnected through digital
|
||||
networks or communication technology. It serves as a global or universal
|
||||
network where data and cognitive processes converge and
|
||||
interact.</p></li>
|
||||
<li><p><strong>Cognition Effect on Cosmic Expansion</strong>: Proposes
|
||||
that collective cognitive activities could affect the energy density of
|
||||
the universe or alter the cosmological constant
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Λ</mi><annotation encoding="application/x-tex">\Lambda</annotation></semantics></math>.</p></li>
|
||||
</ul>
|
||||
<h2 id="mathematical-model">Mathematical Model</h2>
|
||||
<p>The expansion of the universe can be described by the modified
|
||||
Friedmann equations to incorporate cognitive influences:</p>
|
||||
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mover><mi>a</mi><mo accent="true">̇</mo></mover><mi>a</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>8</mn><mi>π</mi><mi>G</mi></mrow><mn>3</mn></mfrac><mi>ρ</mi><mo>−</mo><mfrac><mrow><mi>k</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><msup><mi>a</mi><mn>2</mn></msup></mfrac><mo>+</mo><mfrac><mi>Λ</mi><mn>3</mn></mfrac><mo>−</mo><mi>κ</mi><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{kc^2}{a^2} + \frac{\Lambda}{3} - \kappa C(t)</annotation></semantics></math></p>
|
||||
<p>Where:</p>
|
||||
<ul>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>a</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">a(t)</annotation></semantics></math>
|
||||
is the scale factor of the universe.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mover><mi>a</mi><mo accent="true">̇</mo></mover><annotation encoding="application/x-tex">\dot{a}</annotation></semantics></math>
|
||||
is the derivative of the scale factor with respect to time, representing
|
||||
the expansion rate.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>G</mi><annotation encoding="application/x-tex">G</annotation></semantics></math>
|
||||
is the gravitational constant.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ρ</mi><annotation encoding="application/x-tex">\rho</annotation></semantics></math>
|
||||
is the total energy density (including matter, radiation, dark matter,
|
||||
and dark energy).</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>k</mi><annotation encoding="application/x-tex">k</annotation></semantics></math>
|
||||
represents the curvature of the universe.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>c</mi><annotation encoding="application/x-tex">c</annotation></semantics></math>
|
||||
is the speed of light.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>Λ</mi><annotation encoding="application/x-tex">\Lambda</annotation></semantics></math>
|
||||
is the cosmological constant.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">C(t)</annotation></semantics></math>
|
||||
is a new term representing the influence of cognition via the
|
||||
cyber-mesh.</p></li>
|
||||
<li><p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
is a scaling constant determining the strength of the cognitive
|
||||
influence on cosmic expansion.</p></li>
|
||||
</ul>
|
||||
<h2 id="theoretical-implications-1">Theoretical Implications</h2>
|
||||
<ul>
|
||||
<li><p><strong>Slowing Expansion</strong>: As cognitive activities
|
||||
increase,
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">C(t)</annotation></semantics></math>
|
||||
increases, adding a negative contribution to the expansion rate, thereby
|
||||
slowing down the expansion.</p></li>
|
||||
<li><p><strong>Exponential Relationship</strong>: The effect of
|
||||
cognition on space-time could be modeled as:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>C</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mi>λ</mi><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup></mrow><annotation encoding="application/x-tex">C(t) = C_0 e^{\lambda N(t)}</annotation></semantics></math>
|
||||
Where
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>C</mi><mn>0</mn></msub><annotation encoding="application/x-tex">C_0</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>λ</mi><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>
|
||||
are constants, and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">N(t)</annotation></semantics></math>
|
||||
represents a measure of collective cognitive activity at time
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>t</mi><annotation encoding="application/x-tex">t</annotation></semantics></math>.</p></li>
|
||||
</ul>
|
||||
<h2 id="experimental-and-observational-implications">Experimental and
|
||||
Observational Implications</h2>
|
||||
<ul>
|
||||
<li><p><strong>Astrophysical Observations</strong>: Detectable through
|
||||
precise measurements of redshifts and the cosmic microwave
|
||||
background.</p></li>
|
||||
<li><p><strong>Correlation Studies</strong>: Look for correlations
|
||||
between significant global or cosmic events involving increases in
|
||||
cognitive activity and variations in cosmological observations.</p></li>
|
||||
</ul>
|
||||
<h1
|
||||
id="detailed-mathematical-derivations-for-cognitive-influence-on-cosmic-expansion">Detailed
|
||||
Mathematical Derivations for Cognitive Influence on Cosmic
|
||||
Expansion</h1>
|
||||
<h2 id="introduction">Introduction</h2>
|
||||
<p>This document explores a theoretical model where cognitive activities
|
||||
influence the cosmic expansion rate via a term integrated into the
|
||||
Friedmann equations.</p>
|
||||
<h2 id="mathematical-model-setup">Mathematical Model Setup</h2>
|
||||
<p>The modified Friedmann equation incorporating cognitive influences is
|
||||
given by:</p>
|
||||
<p><math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mover><mi>a</mi><mo accent="true">̇</mo></mover><mi>a</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>2</mn></msup><mo>=</mo><mfrac><mrow><mn>8</mn><mi>π</mi><mi>G</mi></mrow><mn>3</mn></mfrac><mi>ρ</mi><mo>+</mo><mfrac><mi>Λ</mi><mn>3</mn></mfrac><mo>−</mo><mfrac><mrow><mi>k</mi><msup><mi>c</mi><mn>2</mn></msup></mrow><msup><mi>a</mi><mn>2</mn></msup></mfrac><mo>−</mo><mi>κ</mi><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho + \frac{\Lambda}{3} - \frac{kc^2}{a^2} - \kappa C(t)</annotation></semantics></math></p>
|
||||
<p>where
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>C</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mi>λ</mi><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup></mrow><annotation encoding="application/x-tex">C(t) = C_0 e^{\lambda N(t)}</annotation></semantics></math>
|
||||
is the cognitive influence term,
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><msub><mi>C</mi><mn>0</mn></msub><annotation encoding="application/x-tex">C_0</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>λ</mi><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>
|
||||
are constants, and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">N(t)</annotation></semantics></math>
|
||||
represents the level of cognitive activity.</p>
|
||||
<h2 id="derivation-of-ct">Derivation of
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">C(t)</annotation></semantics></math></h2>
|
||||
<p><math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">C(t)</annotation></semantics></math>
|
||||
models the cognitive influence and is defined as:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>C</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msub><mi>C</mi><mn>0</mn></msub><msup><mi>e</mi><mrow><mi>λ</mi><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup></mrow><annotation encoding="application/x-tex">C(t) = C_0 e^{\lambda N(t)}</annotation></semantics></math>
|
||||
with
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">N(t)</annotation></semantics></math>
|
||||
possibly being defined by the integral of data transmission rates and
|
||||
computational power usage:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><msubsup><mo>∫</mo><mn>0</mn><mi>t</mi></msubsup><mi>γ</mi><mrow><mo stretchy="true" form="prefix">(</mo><mtext mathvariant="normal">Data Rate</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>+</mo><mtext mathvariant="normal">Computation Power</mtext><mrow><mo stretchy="true" form="prefix">(</mo><mi>s</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo stretchy="true" form="postfix">)</mo></mrow><mspace width="0.167em"></mspace><mi>d</mi><mi>s</mi></mrow><annotation encoding="application/x-tex">N(t) = \int_{0}^{t} \gamma (\text{Data Rate}(s) + \text{Computation Power}(s)) \, ds</annotation></semantics></math></p>
|
||||
<h2 id="impact-on-cosmic-expansion">Impact on Cosmic Expansion</h2>
|
||||
<p>Differentiating the Friedmann equation with respect to time:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2</mn><mfrac><mover><mi>a</mi><mo accent="true">̇</mo></mover><mi>a</mi></mfrac><mfrac><mover><mi>a</mi><mo accent="true">̈</mo></mover><mi>a</mi></mfrac><mo>−</mo><mn>2</mn><msup><mrow><mo stretchy="true" form="prefix">(</mo><mfrac><mover><mi>a</mi><mo accent="true">̇</mo></mover><mi>a</mi></mfrac><mo stretchy="true" form="postfix">)</mo></mrow><mn>3</mn></msup><mo>=</mo><mfrac><mrow><mn>8</mn><mi>π</mi><mi>G</mi></mrow><mn>3</mn></mfrac><mover><mi>ρ</mi><mo accent="true">̇</mo></mover><mo>−</mo><mn>2</mn><mi>κ</mi><msub><mi>C</mi><mn>0</mn></msub><mi>λ</mi><msup><mi>e</mi><mrow><mi>λ</mi><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup><mover><mi>N</mi><mo accent="true">̇</mo></mover><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">2\frac{\dot{a}}{a}\frac{\ddot{a}}{a} - 2\left(\frac{\dot{a}}{a}\right)^3 = \frac{8\pi G}{3} \dot{\rho} - 2\kappa C_0 \lambda e^{\lambda N(t)} \dot{N}(t)</annotation></semantics></math>
|
||||
This expression relates the rate of change of the universe’s expansion
|
||||
to changes in total energy density and cognitive activity.</p>
|
||||
<h2 id="stability-analysis">Stability Analysis</h2>
|
||||
<p>Stability analysis focuses on the term
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>−</mi><mn>2</mn><mi>κ</mi><msub><mi>C</mi><mn>0</mn></msub><mi>λ</mi><msup><mi>e</mi><mrow><mi>λ</mi><mi>N</mi><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow></msup><mover><mi>N</mi><mo accent="true">̇</mo></mover><mrow><mo stretchy="true" form="prefix">(</mo><mi>t</mi><mo stretchy="true" form="postfix">)</mo></mrow></mrow><annotation encoding="application/x-tex">-2\kappa C_0 \lambda e^{\lambda N(t)} \dot{N}(t)</annotation></semantics></math>,
|
||||
which suggests that increases in cognitive activity contribute
|
||||
negatively to the expansion rate, potentially slowing it.</p>
|
||||
<h2 id="potential-for-observational-verification">Potential for
|
||||
Observational Verification</h2>
|
||||
<ul>
|
||||
<li><p><strong>Redshift Measurements</strong>: Analyze variations over
|
||||
time to detect potential correlations with global cognitive
|
||||
milestones.</p></li>
|
||||
<li><p><strong>Cosmic Microwave Background Analysis</strong>: Examine
|
||||
historical alterations in CMB data that might reflect changes in
|
||||
expansion rates correlated with cognitive activities.</p></li>
|
||||
</ul>
|
||||
<h1
|
||||
id="derivation-of-kappa-from-a-system-of-second-order-differential-equations">Derivation
|
||||
of
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
from a System of Second-Order Differential Equations</h1>
|
||||
<h2 id="introduction-1">Introduction</h2>
|
||||
<p>This document presents a theoretical framework for deriving the
|
||||
scaling factor
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
within a dynamic system characterized by second-order differential
|
||||
equations, using the parameters
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>γ</mi><mo>,</mo><mi>δ</mi><mo>,</mo><mi>ϵ</mi><mo>,</mo></mrow><annotation encoding="application/x-tex">\alpha, \beta, \gamma, \delta, \epsilon,</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ζ</mi><annotation encoding="application/x-tex">\zeta</annotation></semantics></math>.</p>
|
||||
<h2 id="system-of-differential-equations">System of Differential
|
||||
Equations</h2>
|
||||
<p>Consider the following second-order differential equations for state
|
||||
variables
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>x</mi><annotation encoding="application/x-tex">x</annotation></semantics></math>
|
||||
and
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>y</mi><annotation encoding="application/x-tex">y</annotation></semantics></math>:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mtable><mtr><mtd columnalign="right" style="text-align: right"><mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mi>x</mi></mrow><mrow><mi>d</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>α</mi><mi>x</mi><mo>+</mo><mi>β</mi><mi>y</mi><mo>−</mo><mi>γ</mi><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="right" style="text-align: right"><mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></mtd><mtd columnalign="left" style="text-align: left"><mo>=</mo><mi>δ</mi><mi>y</mi><mo>+</mo><mi>ϵ</mi><mi>x</mi><mo>−</mo><mi>ζ</mi><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mtd></mtr></mtable><annotation encoding="application/x-tex">\begin{aligned}
|
||||
\frac{d^2x}{dt^2} &= \alpha x + \beta y - \gamma \frac{dx}{dt} \\
|
||||
\frac{d^2y}{dt^2} &= \delta y + \epsilon x - \zeta \frac{dy}{dt}
|
||||
\end{aligned}</annotation></semantics></math></p>
|
||||
<h2 id="matrix-formulation">Matrix Formulation</h2>
|
||||
<p>The system can be expressed in matrix form as:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mi>x</mi></mrow><mrow><mi>d</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mfrac><mrow><msup><mi>d</mi><mn>2</mn></msup><mi>y</mi></mrow><mrow><mi>d</mi><msup><mi>t</mi><mn>2</mn></msup></mrow></mfrac></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow><mo>=</mo><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>α</mi></mtd><mtd columnalign="center" style="text-align: center"><mi>β</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>ϵ</mi></mtd><mtd columnalign="center" style="text-align: center"><mi>δ</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>x</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>y</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow><mo>−</mo><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>γ</mi></mtd><mtd columnalign="center" style="text-align: center"><mn>0</mn></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mn>0</mn></mtd><mtd columnalign="center" style="text-align: center"><mi>ζ</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mfrac><mrow><mi>d</mi><mi>x</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mfrac><mrow><mi>d</mi><mi>y</mi></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
|
||||
\frac{d^2x}{dt^2} \\
|
||||
\frac{d^2y}{dt^2}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
\alpha & \beta \\
|
||||
\epsilon & \delta
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
x \\
|
||||
y
|
||||
\end{bmatrix}
|
||||
-
|
||||
\begin{bmatrix}
|
||||
\gamma & 0 \\
|
||||
0 & \zeta
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
\frac{dx}{dt} \\
|
||||
\frac{dy}{dt}
|
||||
\end{bmatrix}</annotation></semantics></math></p>
|
||||
<h2 id="eigenvalue-analysis">Eigenvalue Analysis</h2>
|
||||
<p>Stability is analyzed by the eigenvalues
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>λ</mi><annotation encoding="application/x-tex">\lambda</annotation></semantics></math>
|
||||
of the system matrix:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mo stretchy="true" form="prefix">[</mo><mtable><mtr><mtd columnalign="center" style="text-align: center"><mi>α</mi><mo>−</mo><mi>λ</mi></mtd><mtd columnalign="center" style="text-align: center"><mi>β</mi></mtd></mtr><mtr><mtd columnalign="center" style="text-align: center"><mi>ϵ</mi></mtd><mtd columnalign="center" style="text-align: center"><mi>δ</mi><mo>−</mo><mi>λ</mi></mtd></mtr></mtable><mo stretchy="true" form="postfix">]</mo></mrow><annotation encoding="application/x-tex">\begin{bmatrix}
|
||||
\alpha - \lambda & \beta \\
|
||||
\epsilon & \delta - \lambda
|
||||
\end{bmatrix}</annotation></semantics></math></p>
|
||||
<p>The characteristic equation derived is:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>λ</mi><mn>2</mn></msup><mo>−</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi>α</mi><mo>+</mo><mi>δ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mi>λ</mi><mo>+</mo><mrow><mo stretchy="true" form="prefix">(</mo><mi>α</mi><mi>δ</mi><mo>−</mo><mi>β</mi><mi>ϵ</mi><mo stretchy="true" form="postfix">)</mo></mrow><mo>=</mo><mn>0</mn></mrow><annotation encoding="application/x-tex">\lambda^2 - (\alpha + \delta)\lambda + (\alpha\delta - \beta\epsilon) = 0</annotation></semantics></math></p>
|
||||
<h2 id="defining-kappa">Defining
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math></h2>
|
||||
<p>Assuming
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
adjusts the system’s response, it can be defined as:
|
||||
<math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>κ</mi><mo>=</mo><mfrac><mrow><mi>α</mi><mo>+</mo><mi>δ</mi></mrow><mrow><mi>β</mi><mo>+</mo><mi>ϵ</mi><mo>+</mo><mi>γ</mi><mo>+</mo><mi>ζ</mi></mrow></mfrac></mrow><annotation encoding="application/x-tex">\kappa = \frac{\alpha + \delta}{\beta + \epsilon + \gamma + \zeta}</annotation></semantics></math></p>
|
||||
<p>This definition suggests
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
as a measure of balance between direct influences and coupling/damping
|
||||
coefficients, influencing system stability.</p>
|
||||
<h2 id="conclusion-3">Conclusion</h2>
|
||||
<p>This approach provides a theoretical means to relate
|
||||
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>κ</mi><annotation encoding="application/x-tex">\kappa</annotation></semantics></math>
|
||||
to the stability and dynamics of the system, offering insights into the
|
||||
interaction between its parameters and their impact on system
|
||||
behavior.</p>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user