
Page 1 of 16

CATRANGE 3.0 ARCHITECTURE OPTIONS & RECOMMENDATIONS

APRIL 20TH 2009

RAJIV RAJAK

SENIOR SOLUTIONS ARCHITECT

AON BENFIELD

RJAIV_RAJAK@AON.COM

JASON LIND

PRESIDENT / CHIEF SOFTWARE ARCHITECT

LIND INNOVATION

JASON@LIND-I.COM

Page 2 of 16

INTRODUCTION

CatRange refers to the portion of the proposed CatView product which will aggregate and geocode projected loss data

for presentation on the CatView Portal. The product will take intermediate exposure data, currently generated by

CatExpress, which it will then map to Loss data, produced by RMS, AIR and IF modeling software, and aggregate the data

by products, divisions, regions, zones and various geo levels. CatRange will then export the results to the CatView Portal

for review and display.

CatRange's current production release is 2.2 with 2.3 under active development having a target release of early Q3

2009. The current architecture is a client driven model, implemented with .NET 3.5 in Windows Forms, supporting SQL

Server 2000 SP4 and SQL Server 2005 SP3. The current model requires end users to attach the following databases:

EIDM's and CPDM's (generated by CatExpress) , RDM's (generated by RMS RiskLink), Air Area Code, Loss and Exposure

(generated by AIR Classic/2) and IF Results (generated by IF). The user is then required to export the results of the run

from the CPDM to flat files which are then uploaded to CatPortal through CatInHat over SFTP.

The primary motivation behind CatRange 3 is to support the new data model under development for the CatView

product. This presents us with the opportunity to make significant changes to the architecture that will decrease total

cost of ownership and increase reliability, performance and usability.

ARCHITECTURE OVERVIEW

ASSUMPTIONS

The proposed architectures assumes that CatRange 3.0 will be a server centric application, unlike previous versions the

bulk of the work will be performed on centralized servers and not client machines. This approach was decided upon for

several reasons.

With the previous versions of CatRange a massive amount of effort is required diagnosing and solving environment

specific related issues, including operating system and RDBMS service packs as well as differences in hardware and

drivers. A controlled environment will result in a lower cost of ownership as well as increased performance.

Management of decentralized data has proven to be a major hurdle with the current architecture with not only the

network latency issues inherent to moving large data sets from one machine to another, but also obtaining and

maintaining a complete picture of the physical locations of data has proven to be very difficult and human resource

intensive. Monitoring the status and progress of client runs is another major challenge with the current architecture.

CatRange by nature is highly computational intensive product, and with the current version the team has made major

strides in implementing multi-threaded parallelization of selected portions of the application which has significantly

reduced overall run time of the product. In order to maintain this performance, and indeed improve it, a server centric

architecture will need to implement portions of the application in a distributed environment. There are several options

to making this reality, but a primary assumption of this architecture is the existence of a "computational cloud" which

will allow the application to schedule worker processes without the knowledge of how and when those processes will

be executed.

HIGH LEVEL ARCHITECTURE

The following diagram is a high level component diagram of the proposed architecture. Regardless of implementation of

any of the specific components the structure and connections of the components, as illustrated, would seem to be the

best solution keeping in mind the aforementioned assumptions. The tiers represent a physical separation of farms of

servers with those connections communicating via remote calls, such as web services or .NET Remoting.

The components can represent logical class libraries or entire systems depending on their context. A dashed line with an

arrow describes remote communication between two components where as a circle surrounded by a semi circle

describes an assembly reference. These components will need to be composed at a further granularity once the

underlying implementation technologies have been identified and the full requirements defined.

Page 3 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENT DIAGRAM

Page 4 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

CLIENT TIER / WEB CLIENT

DESCRIPTION

The Client Tier describes the system that the end user is using to interact with the application. The Web Client

component is responsible for presenting content delivered by the Web Server component and enabling the end user to

configure, manage and monitor CatRange client runs.

IMPLEMENTATION OPTIONS

There are two primary implementation options for the web client that have been identified, web browser and Silverlight

2 or 3. The web browser solution is inherently cross browser and OS as the web server would generate industry

standard HTML which is more or less supported across the board. Silverlight is also cross browser OS although those OS

choices are more limited in that Microsoft directly supports Silverlight on Internet Explorer 6+, Firefox 2+, Safari and

Chrome on Windows and Firefox and Safari on Mac OS X.

Flex/Flash is an alternative technology to Silverlight, better supported with a much larger install base however limited in

features to comparisons. Java Applets and Active X are other options however with even a more limited feature set.

Another real option would be a more traditional smart client, such as XBAP or even Windows Forms, however that

would not be cross browser or OS and the implementation features and effort would be similar to that of Silverlight.

BROWSER BASED

With browser based applications there are two primary architectures to consider: forms based and AJAX. In a forms

based model the browser will perform a synchronous post back when requesting or interacting with the data, causing

the page to reload. AJAX, Asynchronous Java and XML, on the other hand makes an asynchronous call to a web services

through JavaScript and then renders the response into HTML and interjects it into the appropriate place on the page.

AJAX models provide a richer overall experience as well as reduced overhead on the web server, however developing

such applications can be very challenging especially ones that are cross browser.

SILVERLIGHT 2/3

Silverlight 2 is a Microsoft product released in Q3 of 2008 that enables developers to create rich cross browser and OS

applications without the limitations of HTML markup. Silverlight UI's are defined in XAML, which is a highly featured

XML based vector markup language. The UI logic of the application is written in any .NET language with a limited

implementation of the .NET framework that will run on the clients machine, much of this logic would have to be in

JavaScript in a browser based environment which has serious feature, performance and reliability issues when

compared to .NET languages such as C# and VB.NET.

Silverlight 3 is currently in Beta, with the first version released earlier this month, and is scheduled to go into production

sometime towards the end of the year. Silverlight 3 introduces many new features including 3D UI, improved render

effects, support for the concept of themes, over 60 new and improved controls and improved data binding and

performance.

IMPLEMENTATION RECOMMENDATION

A browser based application ensures maximum compatibility, especially in the mobile device space. However creating a

rich interactive experience in a browser is much more difficult than in Silverlight. We recommend that CatRange 3

primarily target Silverlight 3 and also provide a browser based application with a limited feature set. The browser

application would not leverage AJAX and would be specifically targeted for mobile devices. There is some risk in

developing with a product that is still in beta, however Microsoft has committed to minimizing the changes between the

Beta and RTW. The advantages of Silverlight 3 over 2 are significant and the target release date is well before the target

release of CatRange 3.0.

In this implementation the browser component is optional, however strongly recommend as the use of smart phones is

certainly on the rise. The dual technology implementation will result in the best of both worlds: a rich and highly

interactive application for configuring and managing runs that can be easily developed and an interface for gaining

mission critical monitoring on mobile devices. With the correct architecture the code duplication between the two

implementations can be greatly minimized.

Page 5 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

WEB SERVER TIER / WEB SERVER

DESCRIPTION

The Web Server tier is the server, or farm or servers, responsible for handling requests from the web client. The Web

Server's role is slightly different depending on a browser based or Silverlight based application. In a browser based

model the server will generate HTML for consumption by the browser. In a forms based model the bulk of the HTML will

be generated on the server and in an AJAX application the servers role is to return HTML for injection and highly

specialized XML for the JavaScript to interpret into HTML, depending on the implementation specifics. In a Silverlight

model the web server will provide data for the Silverlight client to consume. In both models the web server has the role

of providing authentication and authorization to the web client.

IMPLEMENTATION OPTIONS - BROWSER BASED

In the web browser model the web server is primary used for rendering data into HTML, as well as authentication and

authorization. There are many technologies and platforms that perform this, Java J2EE/JSP, PHP and Ruby on Rails just

to name a few, however Microsoft's ASP.NET offers one of the best in class solutions on the market. There are several

flavors of ASP.NET currently available, ASP.NET Web Forms, ASP.NET MVC and ASP.NET AJAX.

The other option to consider is a stock portal application such as SharePoint, DotNetNuke or Oracle OBIE. The problem

with stock portal applications is that, although there is relatively little effort needed to develop about 90% of the

application, the last 10% involves heavy customization and workarounds to get the application to function to

requirements. The other issue is that these kind of software tends to lead to applications that feel like a portal product,

and not a product designed specifically for its purpose. These specific issues have been common problems with the

current CatPortal product and we highly recommend that this route not be considered.

ASP.NET WEB FORMS

ASP.NET Web Forms is the most often used implementation of ASP.NET and has existed in some form since .NET 1.0.

Web Forms provides not only a clean separation of UI and business logic, but also a separation of UI design and logic.

The major concept in ASP.NET Web Forms is that each page is constructed from a UI file, which is a mix of HTML and

custom control XML markup, and a code behind, written in a .NET language, that processes logical events and

manipulates the objects represented in the UI markup. Web Forms has a defined page event lifecycle which raises

events at defined stages of the page that generate and render the controls into HTML. In the web forms model the

client uses a form post back to interact with the event life cycle, for example clicking a button raises its click event. The

business and data tiers are called from the code behind and the code behinds sole purpose is to manipulate the UI and

not business logic.

ASP.NET MVC

MVC is a relatively new development in the ASP.NET family, released in Q1 2009. This framework leverages a model-

view-controller pattern that helps map actions on the page to friendly URLs that process the request. A major advantage

to this model is in unit testing where, unlike Web Forms, UI operations can be easily tested in an automated fashion.

The big disadvantage is that there is no event life cycle and data binding is performed through code more reminiscent of

the Classic ASP/JSP/PHP paradigm. MVC is the best option for creating highly interactive AJAX type applications as the

model allows for much better componentization of parts of pages when rendered by JavaScript while maintaining strict

control over markup.

ASP.NET AJAX

ASP.NET AJAX was released in Q1 2007 as a way to implement AJAX applications in a model more consistent with Web

Forms. While development with this technology is generally less effort than on an MVC pattern there are major

detractors. Customizing the AJAX behavior, especially for highly interactive options such as drag and drop, is not well

support out of the box. In order to render any portion of the page the server side must complete the full event lifecycle

greatly degrading performance. ASP.NET AJAX has proved very useful for adding small AJAX functionality to existing web

sites, such as cascading dropdown lists and validation, however has not proved to be a solution for highly interactive

applications.

Page 6 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

WEB SERVER TIER / WEB SERVER

IMPLEMENTATION OPTIONS - SILVERLIGHT

Silverlight clients support two primary methods of interacting with the web server: asynchronous SOAP web services

and sockets. Sockets provide the ability for the server to push information to the client in real time, with a significant

cost in server side overhead in compassion to web services. Web services is the route taken by most Silverlight

applications as the client requesting data is a more familiar and understood paradigm. There are many options for SOAP

web service implementations including J2EE, BizTalk and even SQL Server 2008. The more common solutions in the

Microsoft world are ASP.NET Web Services and Windows Communication Foundation. For sockets generally a custom

service is needed to route events between the sockets open between the clients and server, although industry standard

implementations such as TIBCO are also possibilities. The sockets model is not necessary with CatRange and will not be

discussed further.

ASP.NET WEB SERVICES

ASP.NET Web Services has existed in some form since .NET 1.0 and has been widely used as a SOAP client in the

Microsoft world. This product is hosted by IIS and abstracts XML Serialization and SOAP wrapper creation from the

implementation. The product was a major advancement in web service development when released, however there has

always been serious criticisms over the lack of control of the SOAP envelope markup. Web Services Enhancements was

first released in Q4 2002 and provided primarily security enhancements to ASP.NET Web Services such as encryption.

WSE, while addressing some serious limitations of ASP.NET Web Services, proved very difficult to implement and work

with.

WINDOWS COMMUNICATION FOUNDATION (WCF)

WCF, released as a core part of .NET 3.0 in Q4 2006, represents a major innovation in the world of web service clients.

The primary feature with WCF is that the authorization and markup are completely controllable through the

configuration file, so the same logic could deliver SOAP, JSON in various encrypted capacity without modifying the

underlying code base. Since these are configuration files these changes can actually be made at run time without

recompilation. WCF service libraries can be hosted not only by IIS, but indeed by anything that can spawn a process with

the relevant permissions. Most WCF services are actually deployed as Windows Services.

Another major change is that the operations contract, the methods exposed by the service, are implemented as

interfaces and the same contract can be implemented in different ways and the configuration will control which

implementation is called. For example there might be a read only service and a read/write service implementation, and

based on the authorization one or the other is used. The high degree of configurability combined with the ease of

implementation makes WCF the ideal candidate for most applications.

AUTHENTICATION AND AUTHORIZATION

All versions of ASP.NET have the same authentication and authorization architecture. ASP.NET supports a pluggable

provider model of membership providers and role provider, each of which can be custom implemented to support the

necessary identity and authorization systems such as Active Directory. The exact identity and authorization systems

being used are out of scope for this document, however whichever ones are chosen the provider model will support.

The authentication and authorization components will be componentized so that other tiers can leverage that logic.

IMPLEMENTATION RECOMMENDATION

For a highly interactive browser based application ASP.NET MVC is probably the best option on the market. However, as

discussed in the web client section, we recommend that the browser solution only target a small subset of the

requirements and leave the highly interactive portions to the Silverlight client. For this kind of application ASP.NET Web

Forms is the best fit. For the Silverlight application WCF, while not the only option, will provide the best flexibility in

terms of implementation. The ASP.NET Web Form and Silverlight client/server, while not able to use the same control

logic, will be able to share much of the same underlying logic in common components which in turn communicate with

the Application Tier.

Page 7 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

APPLICATION TIER

The Application Tier is the physical tier where business logic resides. The Orchestration and Computational Tiers, while

not residing physically on the same server farm as the Application Tier, are logically considered part of this tier.

APPLICATION TIER / CLIENT SERVICES

DESCRIPTION

Client Services provides a standard interface for the Client Tier components to communicate with. In addition to

supporting the propose dual browser / Silverlight implementation proposed this will serve as a way for unanticipated

future clients to interact with CatRange, which includes other projects in the proposed CatView product. This

component has the responsibility of routing requests to the Workflow Engine or Data Services components or some

combination thereof. This will abstract the low level implementation details from the implementing clients and maintain

control over the business logic.

IMPLEMENTATION RECOMMENDATION

WCF, as described on page 6, is the perfect candidate for the contract portion of this logic. The business logic itself,

defining validation and external communication, will be further componentized to support reuse without a making a

costly service call. This will support the possibility of hosting this portion of the logic on the Web Server Tier in addition

to the Application Tier, which may or may not improve performance. Further analysis will be required to make this

determination. The Client Services component will have an assembly reference to the Data Services logic and a service

reference to the Workflow Engine component.

APPLICATION TIER / DATA SERVICES

DESCRIPTION

Data Services provides a standard interface for data centric activates such as querying, transforming and transferring

data. This component has the responsibility of forming and executing queries on the Data Tier as well as mapping data

objects to those operations.

IMPLEMENTATION ANALYSIS

The specific implementation of this logic will heavily depend on the database platform and data model design. For a

data model similar to the one currently in use, where logical data components are separated into different logical

databases, no Object Relational Mapping tool on the market is sufficient for our purposes. The problem is that ORM's

generally assume two requirements which are invalid in the current CatRange environment, the data objects reside in

the same physical database and the table names are constant.

ORM's build their queries from some sort of mapping definition, these mapping definitions are then used to build the

actual query syntax using object oriented concepts. The SQL, regardless of variant, has a short cut for identifying tables

in the schema based on the context of the query, querying tables in different schemas requires a fully qualified syntax

which most ORM's do not support. The table name invalidation comes from AIR, where analyses are placed in their own

tables, which while having a constant schema, the names of these tables are dependent on the data. Again most ORM's

do not allow for the names of the tables to be changed at run time.

The current version of CatRange makes heavy use of on the fly dynamic SQL, which has proved very difficult to not only

develop and maintain but also debug. The problem is dynamically generating SQL, either in stored procedures or in

code, is not compile time checked and very difficult to test. What we propose is a generalized dynamic Query Engine

framework, the foundation of which already has been implemented in CatRange 2.3, that will dramatically increase

reliability, performance and development effort of the data centric portions. With no known third party solution this

seems to be the only viable option. The alternative of manually developing and maintaining dynamic SQL logic does not

seem to be a realistic solution that will lead to a stable and reliable product.

Although this component should be developed with the future possibility of supporting multiple RDMS in mind, for now

development should focus on the RDMS solution chosen by the CatView team.

Page 8 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

APPLICATION TIER / DATA SERVICES

IMPLEMENTATION RECOMMENDATION

Like the Client Services component, as described on 7, it is recommended that the Data Services contract is

implemented in WCF, as described on page 6, and then further componentized to support reuse without the overhead

of web services. This is key so that the Client Services and Workflow Engine components will have an assembly

connection to this component, while the Worker Clients will have a web service connection. The Data Services

component must have direct access to the Data Tier where it is unwise for the Worker Clients to have the same as

depending on where those are hosted it could pose a serious security risk. The Query Engine will be componentized in

such a way for reuse in unrelated projects and the CatView solution in general.

ORCHESTRATION TIER

The Orchestration Tier is responsible for managing the logic flow of the core long running processes CatRange requires.

The tier should be responsible for managing the overall state of a run, providing automated validation of data,

distributing status and error message and provide the ability to suspend and roll back individual runs.

ORCHESTRATION TIER / WORKFLOW ENGINE

DESCRIPTION

A Workflow Engine is a product that abstracts the flow of logic from its implementation. This is very useful in many long

running processes as the logic defects are generally not related to the flow of logic, so the logic itself can be changed

and componentized separately from the flow of that logic. There are many workflow orchestration engines on the

market, several implement industry standard XML languages such as XPDL and several proprietary implementations

such as Windows Workflow Foundation and BizTalk.

WHY A WORKFLOW ENGINE?

A major problem faced in the current version of CatRange is there are an enormous amount of possible combinations of

model configurations, and while it attempts to support many of these combinations all of the combinations have not

been and tested and result in invalid output due to invalid assumptions about the data model. Since Aon does not

control the output of RiskLink and AIR Classic, and a different team is responsible for Impact Forecasting as well as the

unavailability of data at many of these combinations, this is not a problem that can be addressed through anything but

informed trial and error. The iterative process of running new combinations, discovering output issues and addressing

the issues through modifications to the business logic and queries will probably never go away.

What can be addressed is the process through which the changes are made, currently a change to any portion of

CatRange's logic at the very least means the run needs to be restarted from scratch and likely means a recompile

requiring a release process. This has resulted in an unacceptable delay in providing loss data on CatPortal. A proper

implementation of an Workflow Engine will allow fundamental changes to be made to the mission critical business logic

and restart a run from the necessary point. For example if there is nothing wrong with the initial data transformations

there is no reason to rerun that portion of the work flow if the problem is in the computational portion or output

transformations. It can even be granularized to level where if only a specific combination was effected by the problem,

the other combinations will not have to be rerun. This can potentially save days of time lost under the current model.

IMPLEMENTATION OPTIONS

WINDOWS WORKFLOW FOUNDATION

WF, released as a core part of .NET 3.0 in Q4 2006, is a very new concept for most developers and has seen limited

implementation thus far. It is arguable that very few applications warrant this separation between logic flow and

implementation, as discussed about CatRange certainly justifies this kind of separation. WF can be thought of as flow

charting with a code behind, very much like ASP.NET applications only the markup is controlling the events, not an

underlying page event lifecycle or user interaction. Workflows in WF are written in the same XAML syntax which

Silverlight and WPF use. One limitation of WF in .NET 3.0 addressed in 3.5 is that web services, both for communicating

to the workflow and the workflow communication to other components, is now fully supported out of the box. WF has

support for workflow persistence which enables transactional activities that can be rolled back and restarted.

Page 9 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

ORCHESTRATION TIER / WORKFLOW ENGINE

IMPLEMENTATION OPTIONS

BIZTALK

BizTalk is a business process management server which has a modular adapter architecture providing standardized

integration between a large variety of products. The primary interest in BizTalk from CatRange's perspective are the

built in and third party workflow automation components available in the product. However conceptually BizTalk could

be leveraged to perform integration between the various components of the CatView product and could also be used to

manage the communication between the various tiers within CatRange. BizTalk adapters also exist for various

distributed computing schedulers and could be useful there as well.

The problem is that although adapters exist that would provide much of the functionality out of the box that would

need to be custom developed in WF, configuring and architecting these components is not trivial. In order to implement

BizTalk a seasoned architect with extensive BizTalk experience would be required, and those resources are very

expensive. Training Aon Benfield employees to support and manage a BizTalk installation is again not a trivial matter.

Another downside is that in its current release, version 2006 R2, only .NET 3.0 is supported and Visual Studio 2005 is

required, meaning that our core components could not leverage the 3.5 framework and language enhancements, let

alone .NET 4.0. BizTalk Server 2009 is slated for Q4 2009 and will support .NET 3.5 and Visual Studio 2008, however

many existing third party adapters will not be immediately available and therefore is unlikely to be a viable option for

this solution.

IMPLEMENTATION RECOMMENDATION

Further analysis is required before making an implementation recommendation, BizTalk may indeed be the best

solution for this product however without a BizTalk architect's analysis it is not possible to perform an adequate

comparison to WF. We recommend that a BizTalk architect be brought in for a high level analysis of BizTalk's capabilities

with respect to CatRange and CatView in general.

ORCHESTRATION TIER / DISTRIBUTED JOB SCHEDULER & WORKER CLIENT

DESCRIPTION

According to SearchDataCenter.com: "A job scheduler is a program that enables an enterprise to schedule and, in some

cases, monitor computer "batch" jobs (units of work, such as the running of a payroll program). A job scheduler can

initiate and manage jobs automatically by processing prepared job control language statements or through equivalent

interaction with a human operator. Today's job schedulers typically provide a single point of control for all the work in a

distributed network of computers."

In the context of CatRange, the Distributed Job Scheduler is responsible for instructing the Worker Clients to perform

the computational intensive calculations that will be displayed in CatView. The scheduling mechanism must abstract

resource allocation and availability, so that from the Workflow Engine's perspective the jobs it schedules are merely

asynchronous operations. The Workflow Engine will use the Distributed Job Scheduler to schedule various combinations

of events that need to be processed and the Worker Client will use the definition of the combination it is processing to

select the events for that combination which it will use to perform calculations on those events.

For CatRange purposes there are primarily two scheduling architectures that would work. One architecture would be a

straight forward queuing scheduler, in which available workers poll the scheduling service for their next job. The other

would be a scheduler that uses complex resource allocation algorithms to determine the best worker available based

upon any number of definable variables. For example, the events of any given CatRange job may have a strong

correlation with another job, therefore the scheduler could recognize that correlation, instruct the Worker Client to

perform caching and then send similar jobs to that client, which would reduce network usage and greatly increase

performance.

While it is feasible to develop a custom scheduler for CatRange, there are many existing fully featured enterprise grade

solutions on the market. For the custom route a queuing scheduler would be the best option as resource allocation

scheduling algorithms are very complex and can take millions of man hours to design and implement properly.

Page 10 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

ORCHESTRATION TIER / DISTRIBUTED JOB SCHEDULER & WORKER CLIENT

IMPLEMENTATION OPTIONS

CUSTOM QUEUING BASED SCHEDULER

The architecture shown here would be sufficient, although not ideal, for the distributed portion of CatRange. The

Workflow Engine will schedule a job by submitting the parameters the job would execute under. Currently a calculation

combination is defined by where the data resides, what analysis is being processed, and a specific geo level, product,

division, region and zone combination. The Distributed Job Scheduler would then add that job to the queue of jobs

which are to be scheduled. When a Worker Client is not running a job it will poll the Distributed Job Scheduler for work,

the Distributed Job Scheduler will then assign the client a job and ensure that job is not scheduled for another client.

The Distributed Job Scheduler would have to deal with prioritizations, it is recommended this functionality is very

limited in scope as prioritization scheduling can be very difficult to implement. At the very least it will need to ensure

that if multiple runs are in progressed the jobs for all of those runs are being worked on in such a way that there is not a

large back log due to any one of the jobs. From the Worker Client's perspective any prioritization, or other resource

allocation optimizations for that matter, will not be important as the client's only concern is processing the jobs it has

fetched.

Under this model the scheduler would also not be aware of what clients are available nor any information about those

clients that could be used for resource allocation prioritization, all clients would be treated equally. Once started these

jobs would not be able to be stopped, since the average job run time will be around one minute this is not a major

concern. Jobs would not be able to be partially executed and then restarted, all jobs must therefore be roll back-able.

Another major concern is keeping the Worker Client's binaries up to date. Any updates to the orchestration component

of the Worker Client, that is the component responsible for polling the scheduling service and executing the jobs it

receives, will need to be updated through an update service mechanism similar to windows update. The component

that executes the job, which communicates with the Data Services component and runs the calculations, would be an

external binary that can be executed by running the process and passing it parameters. This executable component

could be distributed through the same update service, however it would be better if the Distributed Job Scheduler could

manage these as it is possible different jobs could be running different versions of the executable.

Page 11 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

ORCHESTRATION TIER / DISTRIBUTED JOB SCHEDULER & WORKER CLIENT

IMPLEMENTATION OPTIONS

CONDOR HIGH THROUGHPUT COMPUTING SYSTEM

Condor is one of the most mature and widely used

distributed computing schedulers on the market. Form

the Condor website: "Condor is a specialized workload

management system for compute-intensive jobs. Like

other full-featured batch systems, Condor provides a

job queuing mechanism, scheduling policy, priority

scheme, resource monitoring, and resource

management. Users submit their serial or parallel jobs

to Condor, Condor places them into a queue, chooses

when and where to run the jobs based upon a policy,

carefully monitors their progress, and ultimately

informs the user upon completion." Condor is a free

and open source project founded and run by the

University of Wisconsin in 1986 as primarily a cycle

scavenging product, designed to utilize the resources

of desktop systems when not in used. Since then considerable effort has been spent on developing Condor not only into

the premier general purpose cycle scavenging product on the market, but also as a major distributed computing

scheduler used by many of the world's most powerful supercomputers, including IBM Blue Gene and NASA's Advanced

Supercomputing facility.

Condor would not only provide a heavily used and well supported and featured scheduler for use in a dedicated cluster,

but also possibly be able to leverage every desktop system on Aon's network when they are not in use. There is built in

functionality for scheduling jobs on configurable prioritization and resource allocation policies as well as providing

enterprise grade monitoring of jobs in progress and automated handling of failures of both execution logic and client

hardware. For instance if a job was running on a desktop and that desktop became unavailable for any reason, Condor

would be able to reschedule that job to another client. In fact Condor supports a concept of application check points

where it would know the progress of the executable and be able to then restart the job from that point. A dedicated

cluster for CatRange could still exist and jobs would be prioritized onto that cluster first and then schedule jobs to the

desktop cluster, since the specialized cluster would likely have better overall performance than the desktop clients.

Condor's scheduler, monitoring services and clients can be implemented on a wide variety of operating systems,

including Windows and Linux. The executables themselves can be developed in any technology supported by the clients.

The biggest difference between the Condor and the Queuing architecture described on page 10 is that the Worker

Clients do not poll the Distributed Job Scheduler in Condor and instead the scheduler instructs the client. One of the big

benefits of having the scheduler be able to contract the clients directly is better overall monitoring support.

One interesting option is the possibility that the client executables could be written in compiled MATLAB. CatRange 1.0

was actually developed entirely in MATLAB and ported to .NET in version 2, although .NET has proven to be a better

solution in most areas of the application the calculation portion of the application was both faster in execution and less

code in the MATLAB version. However parallel, let alone distributed, development in MATLAB is very difficult and since

version 2 was able to leverage multithreaded parallel iteration of the various geo combinations 2.0 has achieved a

significant reduction in run time when compared to 2.0.

While Condor is freely available, initial configuration and the development of the prioritization and resource allocation

policies is not trivial, however once implemented overall system administration is not overly difficult. UW Madison

offers priority support contracts starting at $2,323 a year. For more information: http://www.cs.wisc.edu/condor/

Page 12 of 16

ARCHITECTURE OVERVIEW

HIGH LEVEL ARCHITECTURE COMPONENTS AND IMPLEMENTATION OPTIONS

ORCHESTRATION TIER / DISTRIBUTED JOB SCHEDULER & WORKER CLIENT

IMPLEMENTATION RECOMMENDATION

Both custom developing a Queuing Scheduler and using Condor are viable options, and while Condor certainly offers

more out the box functionality than would be feasible for Aon to develop in a custom scheduler, a consultant would

likely need to be brought in for at least the initial configuration as well as a support contract for the duration of

CatRange's use of Condor. Schedulers are a very complex problem with serious implementations requiring a large cross

section of areas of expertise including: information theory, statistics, computer science, networking and combinatorics.

Schedulers like Condor have taken hundreds of millions of dollars and decades to refine and there is no feasible way for

Aon to develop a custom scheduler with a feature set comparable to that of Condor or other off the shelf distributed

computing schedulers. However a very scaled down scheduler using the queuing architecture, while not ideal, would be

sufficient for CatRange's purposes and could be developed and supported without outside resources. We recommend

that an expert in Condor to be brought in and help perform a cost benefit analysis of the options presented.

DATA TIER / DATABASE FARM

The exact design of the database farm is outside of the scope of this document as another CatView team is responsible

for this component. From a CatRange perspective the main importance is that the Data Services layer should be able to

query the farm without knowledge of the physical location of the data and that there be one point of entry to the

databases needed.

Page 13 of 16

BUSINESS LOGIC AND FLOW OVERVIEW

HIGH LEVEL BUSINESS LOGIC OF CATRANGE

The following diagram details at a high level the workflow of a CatRange based on the current system and the proposed architecture.

Page 14 of 16

BUSINESS LOGIC AND FLOW OVERVIEW

 CATRANGE RUN WORKFLOW

CATRANGE USER START RUN

The CatRange User will define a run configuration, through other activities on the Web Server which are not yet defined,

which the Web Server will then use to launch the run.

START RUN VALIDATE AND RUN

The Web Server will call the Client Services component with the run configuration and wait for the configuration to be

validated. This validation will only validate that the configuration is correct and not that the underlying data is. The data

validations will happen asynchronously in other activities. If the configuration is valid the Client Services component will

launch the run with the defined configuration asynchronously.

VALIDATE AND RUN VALIDATE RUN DATA

The Client Services component will launch the run configuration on the Workflow Engine, the Workflow Engine will then

validate that the underlying data is valid for analysis. This would include checks such as ensuring data is available at the

levels and perspective selected and that constraints such as region, zone and line of business schemes are correct.

VALIDATE RUN DATA RUN VALIDATION CHECK

The Workflow Engine will call the required Data Service component's Run Validation Checks and capture the results for

further processing.

VALIDATE RUN DATA REPORT RUN VALIDATION ERRORS

After processing the necessary Run Validation Checks the Workflow Engine will notify the CatRange User of the

validation status of the run. If there are any validation failures the Workflow Engine will suspend the run until the

CatRange user indicates it is ready proceed. The CatRange user can either choose to ignore the validation failures and

continue with the run or make changes to the configuration or data and restart the run.

REPORT VALIDATION ERRORS INITIAL DATA TRANSFORMATIONS

After notifying the CatRange User of successful validation checks, or after being instructed to ignore the failed checks,

the Workflow Engine will transform the data for user by later activities to both improve performance and simplify logic.

INITIAL DATA TRANSFORMATIONS GENERATE DATA / PORTFOLIO / LOCATION / GEO / ACCOUNT TRANSFORMATIONS

The Workflow Engine will instruct the Data Services component to perform the necessary General, Portfolio, Location,

Geo and Account transforms based on the configuration. Depending on the size of the data these transformations

currently take between several minutes and several days to occur. The performance will be heavily impacted by the

number of concurrent runs and the concurrent query capacity of the Data Farm. This is currently referred to as the

"Setup Portion".

INITIAL DATA TRANSFORMATIONS DATA VALIDATION CHECKS

After the Workflow Engine completes the necessary transformations it will then run a series of Data Validation Checks

to ensure that the data was transformed properly. In the current version of CatRange many runs pass the initial

validation checks but still produce incorrect output, many of these scenarios could be avoided through straight forward

validation checks of the data.

DATA VALIDATION CHECKS DATA VALIDATION CHECK

The Workflow Engine will call the required Data Service component's Data Validation Checks and capture the results for

further processing.

DATA VALIDATION CHECKS REPORT DATA VALIDATION ERRORS

After processing the necessary Data Validation Checks the Workflow Engine will notify the CatRange User of the

validation status of the run. If there are any validation failures the Workflow Engine will suspend the run until the

CatRange user indicates it is ready proceed. The CatRange user can either choose to ignore the validation failures and

continue with the run or make changes to the configuration or data and restart the run. It is also possible to make

manual changes to the intermediate data so that the Initial Data Transforms would not have to be run, while this is

something that should probably be avoided there are certainly scenarios that could justify this.

Page 15 of 16

BUSINESS LOGIC AND FLOW OVERVIEW

 CATRANGE RUN WORKFLOW

REPORT DATA VALIDATION ERRORS CALCULATE LOSSES

After notifying the CatRange User of successful validation checks, or after being instructed to ignore the failed checks,

the Workflow Engine will begin the process of calculating losses for the configured run. Depending on the size of the

data and other data factors, such as the number of geo combinations, calculating losses in the current version can take

anywhere from minutes to many days to complete. The performance of the new version will be heavily impacted by the

number of concurrent runs, the number of worker clients and their processing capacity, and the concurrent query

capacity of the Data Farm.

CALCULATE LOSSES PORTFOLIO / ACCOUNT / GEO / LOCATION / VIEWING GUIDES

Based on the configuration, the Workflow Engine will calculate losses for Portfolio, Account, Location, Hurricane

Viewing Guide and Geo level data.

PORTFOLIO CALCULATIONS SCHEDULE JOB

For portfolio data there is only one combination of calculation that needs to be processed. Currently XSAAL calculations

for Account and Geo are dependent on this job. Ideally in CatRange 3 this dependency will be removed, or at least

separate it from the rest of the Account and Geo calculations. Another dependency on portfolio values is a performance

optimization in the Geo calculations called country replication, the idea being if there is only one country in the data set

(as is mostly the case) the values in the portfolio will be the same for the country level combination for all products,

divisions, regions and zones. It is possible to remove this dependency by waiting to schedule the replication logic until

after the Portfolio and Geo calculations have completed.

LOCATION CALCULATIONS SCHEDULE JOB

The current implementation of the calculation logic requires a single query to handle the calculations for all locations

since only an aggregatable metric is currently required. If non-aggregatable metrics are required in the future more than

one job will need to be scheduled.

ACCOUNT CALCULATIONS GET ACCOUNT ACCOUNT CALCULATIONS SCHEDULE JOB

The Workflow Engine will contact the Data Services component for the specific account ids in the underlying data set.

Account calculations can be broken down and scheduled by account, the event data for each account are completely

independent and impossible to correlate without analyzing the data directly.

GEO CALCULATIONS GET GEO COMBINATIONS GEO CALCULATIONS SCHEDULE JOB

This process is normally by far the most time and resource consuming portion of CatRange. The Workflow Engine will

contact the Data Services component for the specific Geo Combinations in the underlying data set. Currently a Geo

Combination is defined as a Geo Level (country, state, county, etc) and a combination of a Product, Division, Region and

Zone with the possibility of any of these combinations being marked as 'ALL'. Since these combinations are related in

various ways there are performance enhancements in place and the possibility for further enhancements to be made.

One current performance enhancement is the concept of replication as defined above in the Portfolio Calculations, in

addition to country level replication data can be replicated at other various levels as well in the case that there is only

say one state in a country. The replication jobs will be delayed until after the vanilla jobs have completed, so that the

availability of necessary data is ensured.

VIEWING GUIDE CALCULATIONS GET SEVERITY GATE COMBINATIONS VIEWING GUIDE CALCULATIONS SCHEDULE JOB

Hurricane Viewing Guides define event sets according to a predefined combination of severities and gates and which is

then used to run various calculations similar to those discussed on page 16. Specifically Hurricane Viewing Guides are

used to project losses based on historical hurricane data. The severity and gate combinations are fetched from the Data

Services component and the Viewing Guide Calculation jobs are scheduled for those combinations.

RECAST LOSSES CALCULATION SCHEDULE JOB

Recast Losses calculate the losses for a single specific historical event and is performed entirely in SQL.

REPLICATION SCHEDULE JOB

As described above under certain circumstances both aggregatable and non-aggregatable data can be replicated from

previously calculated results. These jobs are performed entirely in SQL and scheduled after the results are available.

Page 16 of 16

BUSINESS LOGIC AND FLOW OVERVIEW

 CATRANGE RUN WORKFLOW

SCHEDULE JOB PORTFOLIO / ACCOUNT / LOCATION / GEO CALCULATION / REPLICATION

The Scheduler will assign the various jobs to the Worker Client which will then execute the jobs. The calculation jobs are

very CPU intensive whereas the transformation queries in the Location and Replication jobs are more database heavy.

These database heavy jobs do not necessarily need to use the same execution mechanism as the calculation jobs.

CALCULATION JOB GET EVENTS LOAD LOSS TABLES RUN CALCULATIONS

A calculation job will fetch the specific event combination for the scheduled combination and load those events into a

Loss Table which will then be used to run the calculations.

VIEWING GUIDE CALCULATION JOB GET VIEWING GUIDE EVENTS LOAD LOSS TABLES RUN CALCULATIONS

A viewing guide calculation job will fetch the specific event combination for the scheduled severity gate combination

and load those events into a Loss Table that is used to run the specific calculations. These calculations are slightly

different from those described in this document.

RUN CALCULATIONS AAL / XSAAL

AAL and XSAAL are aggregatable calculations used in projecting losses, AAL without any event thresholds and XSAAL

with a defined threshold. These calculations can be written in SQL and may not need to be run on the worker client.

RUN CALCULATIONS PML / TCE / RISKPML

PML, TCE and RiskPML are non-aggregatable calculations which are difficult or impossible to implement in SQL. These

calculations are very CPU and memory intensive and are prefect candidates for distributed computing. Probable

Maximum Loss (PML) is a beta distribution calculation which describes the cumulative probability and cost of losses in

an event set whereas RiskPML is the same for events in the portfolio but not part of the combination. Tail Conditional

Expectation (TCE) is a calculation that measures the probability and cost of tail-events which are events that are not

expected to happen. TCE uses the same event set as the PML calculation for a given combination. These events are only

run at Account and Geo Levels

RUN CALCULATIONS OUTPUT RESULTS REPORT COMPLETION COMPLETE JOB CALCULATE LOSSES REPORT JOB ERRORS

After each calculation is run the results will be outputted in an intermediate format that is better suited for internal

purposes than the target data model. While this is certainly true with the current architecture this may not be the case

in the final architecture, however it will still be beneficial to separate in progress and completed results. Examples of

this benefit include staging purposes as well as the ability to group previously executed runs together into the same

logical analyses for purposes of display in CatView.

Upon completion of the result outputs the Worker Client will inform the scheduler that the Job is complete which will in

turn inform the Workflow Engine. The Workflow Engine will then notify the CatRange user of the status of the job, if

there are any exceptions or validation errors the run will be suspended, otherwise the run will proceed to the output

transformations. In the event of an error the CatRange user will be able to modify the configuration, underlying data or

instruct the development team to modify logic and then optionally be able to restart all or any part of the run.

REPORT JOB ERRORS OUTPUT TRANSFORMATIONS TRANSFORM DATA VALIDATE OUTPUT REPORT OUTPUT VALIDATION ERRORS

After the intermediate data has been successfully validated that data will be transformed into a format defined by the

CatView team. Currently this portion of the logic is called CPDM population. The output will then be validated to ensure

all data constraints are properly met and any violations will be reported to the CatRange user by the Workflow Engine.

In the event of invalid output the CatRange user will be able to modify the configuration, underlying data or instruct the

development team to modify logic and then optionally be able to restart all or any part of the run. After the successful

completion of this process storage of the intermediate data is no longer necessary, although would be extremely

valuable if additional calculations were necessary on the same analysis in the future.

REPORT OUTPUT VALIDATION ERRORS EXPORT DATA EXPORT REPORT EXPORT STATUS

After the intermediate data has been successfully transformed for output the data will be exported to CatView.

Currently this process involves exporting the CPDM data to flat files and then transferred using SFTP via CatInHat. Ideally

the new version will allow for better automation through a mechanism such as SQL Server Integration Services. CatView

will verify the validated of the data and the CatRange user will be notified of any validation errors preventing transfer.

