Deceive, Detect, Disrupt: Autonomous Digital Twin Decoy Networks for Cyber Threat Engagement
Abstract

This proposal outlines the development of a realistic Al-driven digital twin decoy network leveraging
Microsoft Azure to enhance cyber defense through deception. The system will simulate a secure,
enterprise-grade network environment in the cloud, dynamically adapting its traffic patterns and system
behaviors using advanced AI/ML techniques — including Generative Adversarial Networks (GANSs) for
synthetic yet lifelike traffic generation, reinforcement learning (RL) for adaptive response strategies,
and time-series modeling for credible temporal activity patterns. The entire decoy environment is defined
and deployed using Infrastructure as Code (IaC), ensuring consistency, scalability, and minimal manual
effort in managing Azure resources. By mirroring the structure and behavior of a real corporate network,
this digital twin decoy is designed to mislead even state-sponsored cyber adversaries, confounding
their reconnaissance and exploitation efforts. Simultaneously, the platform will detect, distract, and
track adversaries by collecting high-fidelity threat intelligence from their interactions within the decoy
environment and feeding those insights back to defenders in real time. This proactive defense strategy
aims to stay ahead of attackers by safely learning from their tactics in a sandbox environment, ultimately
hardening the real networks. We present the background and related work in digital twins and cyber
deception, detail the proposed system architecture and AI/ML methodology, describe the Azure-based
deployment and automation approach, discuss security considerations and use cases, and analyze the
strategic impact of this approach for Air Force and broader cybersecurity stakeholders.

Introduction

Modern organizations (in both commercial and defense sectors) face an onslaught of increasingly
sophisticated cyber threats that often outpace traditional security defenses. Attackers — including
advanced persistent threats (APTs) from state-sponsored groups — employ stealthy techniques to quietly
infiltrate networks, exploit unknown vulnerabilities, and exfiltrate sensitive data. In this evolving threat
landscape, breaches frequently go undetected until it’s too late, resulting in costly damage or loss of
critical information. To combat these challenges, defenders are seeking proactive and innovative
strategies that can outmaneuver attackers rather than just react to incidents. One such approach is cyber
deception, which involves setting traps or decoy resources within an IT environment to lure attackers into
revealing themselves and to study their methods in a controlled setting. A classic example is the honeypot:
a decoy system intentionally designed to appear as a lucrative target, thereby attracting adversaries and
allowing defenders to observe malicious activities. Honeypots and broader honeynet environments have
been used for decades to gather threat intelligence and divert attacks away from real assets. However,
traditional honeypots are often static and limited in scope, making them easier for advanced attackers to
eventually fingerprint and avoid. What is needed is a more dynamic, lifelike decoy environment that can
continuously adapt and convincingly emulate a real network over time.

In parallel, the concept of the digital twin has risen to prominence as a means to create virtual replicas of
physical systems. A digital twin is a comprehensive virtual model of an object, system, or environment
that is kept synchronized with its real-world counterpart. Originating in Industry 4.0 and IoT, digital twins
enable real-time monitoring and simulation of physical processes by mirroring sensor data and system
states. This technology allows for what-if analyses, predictive maintenance, and optimization without
risking the actual system. Recently, this idea has begun to influence cybersecurity, with researchers



proposing the use of digital twins to model entire network environments and simulate cyber threats within
these virtual replicas. For example, a digital twin of a company’s network can be used to safely run
cyber-attack simulations and observe effects without endangering production infrastructure.

Combining the principles of cyber deception with digital twin technology leads to the concept of a
“digital twin decoy network.” This is essentially a high-fidelity virtual replica of an enterprise
network that serves as a decoy environment for adversaries. Unlike a standalone honeypot (which might
be a single fake server or service), a digital twin decoy is an entire network simulation — complete with
multiple hosts, services, user behaviors, data, and interconnecting traffic — all designed to be
indistinguishable from a real environment. The decoy network is instrumented with extensive telemetry to
monitor attacker actions closely. Because it is a flexible software-defined environment, it can adapt on
the fly in response to attacker behaviors or evolving threat intelligence. Traditional honeypots are largely
passive traps, whereas a digital twin decoy provides a dynamic and integrated approach: it not only
attracts attackers but also simulates an entire network’s behavior in real-time, turning the decoy into an
active defense system rather than just a passive sensor. In practice, this means as an attacker explores the
decoy, the environment can evolve (e.g. revealing new fake assets or altering responses) to keep the
attacker engaged and unaware of the ruse.

In this proposal, we advocate building such an Al-driven digital twin decoy network on Microsoft Azure,
leveraging the Azure Digital Twins platform as a core enabling technology. Azure Digital Twins (ADT)
allows modeling of complex environments as a graph of digital entities (“twins”) with properties and
relationships defined in Azure’s Digital Twins Definition Language (DTDL). Originally intended for IoT
scenarios (smart buildings, factories, etc.), ADT provides an ideal framework to model an enterprise
network’s topology — including devices, servers, user workstations, applications, and their inter-relations
—in a structured way. By using Azure Digital Twins to represent the decoy network’s blueprint, we gain a
high level of abstraction and programmability: the model defines what types of nodes (e.g., Windows 10
client, Linux server, network switch, user account) exist and how they connect (e.g., subnets, trust
relationships, data flows). Azure’s cloud infrastructure can then instantiate this model as live resources:
virtual networks, virtual machines (VMs) or containers, and platform services, all deployed through code.
In line with modern DevSecOps practices, we will employ Infrastructure as Code tools (such as Azure
Resource Manager templates, Bicep, or Terraform) to automatically deploy and configure the entire decoy
environment. This ensures the environment can be reliably recreated or scaled on-demand, and that any
changes to the decoy network (for example, adding a new subnet or simulating a new application) are
managed through version-controlled code for consistency and repeatability.

Crucially, simply cloning a network’s topology is not enough — sophisticated adversaries will quickly
recognize a fake environment if the behavior of systems and users seems artificial or static.
Therefore, our system integrates AI/ML techniques to imbue the digital twin with lifelike behavior. We
will use generative models to produce realistic network traffic and host activity, and adaptive algorithms
to respond to the attacker in real time, maintaining the illusion of a real network. Techniques like GANs
can create plausible network traffic flows and data artifacts; prior research has shown that replaying
recorded traffic is insufficient for deception, as advanced attackers can detect repetitive pattern. Instead,
generative models (e.g., sequence-based GANSs or variational autoencoders) can produce traffic that is
statistically similar to real traffic but with enough variation to avoid fingerprinting. Likewise,
reinforcement learning will be leveraged so that the decoy environment can autonomously adjust its



responses and environment states based on attacker behavior, effectively giving the decoy a “brain” to
orchestrate dynamic interactions. In summary, the proposed solution merges cloud-based digital twin
technology with cutting-edge AI/ML to create a dynamic, self-adapting decoy network that addresses
the limitations of static honeypots.

SBIR Topic Objectives and Innovation

This work directly addresses the key objectives of USAF SBIR topic AF252-0005: AI/ML-Generated
Decoy Networks:

Maximum Automation: The decoy network generation and management are highly automated.
We use Azure Digital Twins as a programmatic model of the network and Infrastructure-as-
Code deployment pipelines to instantiate decoy environments with minimal manual input.
Automated orchestration handles environment setup, attacker engagement, and teardown,
allowing defensive cyber operators to deploy realistic decoys on-demand with one-click effort.

Deception Realism: The decoy is lifelike enough to deceive a sophisticated state-sponsored
hacker. Advanced AI/ML drives realism: GAN-based generators create synthetic network traffic,
user activity, and data that statistically mimic real operations, while time-series models reproduce
realistic usage patterns (e.g. daily login routines, periodic backups). The decoy hosts are
populated with believable system logs, files, and behaviors. By mirroring a real network’s
topology and habits (even incorporating sanitized patterns from live networks), the decoy appears
authentic and evolves over time, making it extremely difficult to distinguish from a real network.

Adversary Tracking and Intelligence: All adversary interactions in the decoy are monitored and
recorded in detail without alerting the attacker. Every malicious action (network scans, exploits,
lateral movements, data exfiltration attempts) is captured via instrumented logging on decoy hosts
and networks. These events feed into a threat intelligence pipeline (e.g. streaming to an analysis
platform like Azure Sentinel) that tracks the attacker’s tactics, techniques, and procedures
(TTPs) in real time. The system can identify Indicators of Compromise and even capture
malware for analysis. This provides defenders with a real-time view of adversary behavior as well
as forensic data to inform countermeasures in the real environment.

Real-Time Control (Adaptive Responses): The platform allows dynamic, real-time control over
the decoy environment’s reactions to the adversary. A reinforcement learning-based agent
continuously decides how the decoy should adapt (e.g. deploying new decoy systems, modifying
responses, or seeding additional fake “breadcrumbs” for the attacker) to maximize engagement.
Defensive operators can configure response modes to be fully automated or require human
approval (semi-automated) for certain actions. Through a management interface, operators retain
the ability to intervene or adjust deception activities on the fly. This ensures that decoy
modifications or countermeasures can be executed in real time, either autonomously or under
human supervision, as the situation demands.

By innovatively combining cloud automation and Al-driven behavioral modeling, our approach meets the
SBIR’s challenge of creating AI/ML-generated, dynamic decoy networks that are easy to deploy yet
convincing enough to fool APT-level adversaries, while giving defenders powerful tools to observe and
influence attackers in real time.



System Architecture

The proposed system architecture for the Al-driven digital twin decoy network is composed of multiple
layers, integrating Azure cloud components with Al-driven modules. The design is organized into the
following layers (illustrated conceptually in our system diagram):

1. Digital Twin Network Model (Design Layer): At the foundation is the Azure Digital Twins model of
the enterprise network we aim to simulate. Using Azure Digital Twins, we create a graph of digital twins
representing all relevant entities in a corporate network and their relationships. Each type of network
component (e.g. workstation, server, router, user account, application) is defined as a model in Azure’s
DTDL (Digital Twins Definition Language). For example, we define a model for a “Windows 10 Client
Machine” twin with properties like hostname, OS version, installed software, and relationships like
connectedTo (linking to a switch or network segment twin) or AasUser (linking to a user account twin).
Similarly, a “Corporate User” twin has properties like role, fake credentials, typical login times, and
relationships to the devices they use. Higher-level constructs such as network segments (e.g., HR subnet,
DMZ, R&D network) can be modeled as well. This digital twin graph encodes the blueprint of the decoy
environment — its topology, asset inventory, and even behavioral parameters for different entities. The
model can be kept in sync (in a sanitized way) with an actual production network’s design (minus
sensitive data), or it can represent a purely fictional network designed for deception. The key is that this
twin model is rich enough to generate a lifelike environment and is accessible programmatically via
Azure APIs.

2. Infrastructure Deployment & Cloud Integration (Deployment Layer): Next, the system uses the
twin model as a blueprint to deploy a live instance of the decoy network in Azure. We employ
Infrastructure as Code (IaC) (e.g. Terraform scripts or Azure ARM/Bicep templates) to instantiate
corresponding Azure resources for everything described in the digital twin model. This includes creating
Azure Virtual Networks and subnets to mirror the network segments defined in the twin graph,
deploying virtual machines (or containers) for each decoy host, setting up appropriate network security
groups or firewall rules to replicate the real network’s access controls (so that the decoy’s network
behavior and segmentation look authentic), and configuring Azure platform services as needed to simulate
enterprise services (for example, deploying a decoy SQL Database to mimic a corporate database server).
The use of [aC ensures we can stand up or tear down the entire environment reliably and repeatedly. It
also allows deploying multiple instances of the decoy network if needed — for example, to cover different
divisions of an organization or to isolate multiple simultaneous adversaries. Each decoy host VM is
instrumented with monitoring and logging agents. For instance, a decoy Windows server might run a
logging agent that sends its event logs to an Azure Log Analytics workspace, and a heartbeat agent to
report its status back to the Azure Digital Twins instance (closing the loop so the twin’s state reflects the
actual VM state). The Azure Digital Twins service can be configured to emit events (via Azure Event Grid
or Functions) so that changes in the twin state (e.g., a flag indicating a decoy host was “compromised”)
can trigger automated responses in the cloud environment. All sensitive operations (deploying VMs,
configuring networks, etc.) are governed through Azure Role-Based Access Control (RBAC) and
principle of least privilege, ensuring the decoy infrastructure is managed securely via code with minimal
manual intervention. By encapsulating the environment definition in code, we achieve consistency (every
deployment is identical unless the model or code is changed), scalability (Azure can easily handle



increasing the number of hosts or segments if the model expands), and maintainability (updates to the

model propagate through an automated pipeline to update the environment).

3. Simulation & Behavior Engine (AI/ML Layer): Once the infrastructure is deployed, the focus shifts
to making the decoy network operate in a realistic, autonomous manner. This is handled by the Simulation
& Behavior Engine, which comprises several Al-driven subcomponents:

Background Traffic Generator (GAN-based): This component produces background network
traffic and system activity so that the environment looks “lived-in” even before any attacker
interacts. It uses generative models (such as GANs or Variational Autoencoders) trained on real
network data from enterprise environments to generate synthetic but realistic traffic patterns. For
example, using a dataset of normal corporate network flows (captured from a real network’s
NetFlow logs or PCAPs), we train a model to generate synthetic network traffic that statistically
mirrors legitimate user behavior. Prior work (e.g., the NetShare system) has demonstrated using
time-series GANs to capture flow inter-arrival times and packet sizes in order to produce high-
fidelity network traces that emulate real traffic. Our traffic generator will create various types of
benign traffic: web browsing from decoy user workstations (simulated via actual HTTP requests
to innocuous sites or internal web servers), periodic file transfers between application servers and
databases, authentication and directory service traffic (Kerberos, LDAP) corresponding to users
logging in and scheduled tasks, etc. To an attacker observing the network (e.g., via a packet
sniffer on a compromised host), this background traffic should appear indistinguishable from that
of a real enterprise. Importantly, we avoid simply replaying the same recorded traffic loops
(which could be recognized by an observant adversary). Instead, the generator uses ML to create
statistically similar but non-repeating traffic, possibly mutating packet timings or payload
contents within realistic bounds. The GAN’s discriminator (trained during development) helps
ensure that the synthetic traffic is hard to differentiate from real traffic. Over time, we can retrain
or fine-tune this model with new traffic data (including, potentially, incorporating some attacker-
generated traffic patterns to make the environment even more convincing by occasionally
mimicking malicious traffic as decoy noise).

User & Host Behavior Emulator (Agent-Based + Time-Series): Beyond network packets, the
decoy must simulate higher-level user and system behaviors: employees logging in, typing
commands, accessing files, and systems performing maintenance tasks. We achieve this with a
combination of scripted agents on the decoy hosts and Al models governing the schedule of these
actions. For scheduling, we apply time-series models that capture the “rhythm of life” in the
enterprise. For instance, an LSTM-based model or statistical model might dictate that logon
events for certain user personas occur at 8—9am on weekdays, that data backup jobs run on Friday
nights, or that a server exhibits heavy CPU load at end-of-month reporting periods. We can train
these schedules using real login and job schedule data (sanitized) from a similar network. We
inject seasonality and randomness so that patterns are believable but not overly regular. Each
decoy host will run a lightweight agent (e.g., a script or daemon) that executes actions according
to these schedules: e.g., logging a decoy user into a workstation via RDP, opening a document or
database, or initiating a connection to another service. This creates the illusion of active users
and processes doing normal work in the network. Modern techniques like TimeGAN (a
generative adversarial network for time-series) could be employed to generate sequences of



events that have realistic temporal correlations (such as bursts of activity followed by idle
periods). The end result is that an attacker poking around hosts will find believable evidence of
routine user activity (recent logins, files with recent timestamps, etc.).

Adaptive Attacker Engagement (Reinforcement Learning Agent): Perhaps the most critical
Al component activates once an attacker is in play. A reinforcement learning (RL) agent
monitors the attacker’s actions (via the decoy’s telemetry) and decides how the environment
should react in order to keep the adversary engaged without tipping them off. In a static honeypot,
all system responses are predetermined and eventually become predictable; in our system, the RL
agent adds a layer of dynamic, learned responses aimed at prolonging the deception. Drawing
inspiration from recent research like HoneyloT. we will define a set of possible actions the decoy
can take in response to attacker behavior. For example, if the attacker probes a certain service on
a decoy server, possible decoy actions might include: responding with a benign error, emulating a
known vulnerability (e.g. sending back a fake crash or dummy credentials), or dynamically
launching a new decoy asset (e.g. “discovering” another server in the network for the attacker to
pivot to). The RL agent’s policy will be trained (using simulated attackers or past attack data) to
choose responses that maximize the engagement and intelligence-gathering. The state for the RL
agent will include the attacker’s observed behavior so far (e.g. what systems have been
compromised, what tools they are using) and a memory of deceptive artifacts already presented
(to avoid repetition or contradictions). The reward function is engineered to reflect our objectives:
maximize attacker dwell time and activity (for more data collection) and maximize data
gathered (unique TTPs observed), while minimizing the chance of the attacker getting suspicious
or disengaging. We may employ deep Q-learning or policy-gradient methods to train this agent.
Effectively, this gives the decoy network a “self-driving” capability for handling intrusions — it
can autonomously decide how to react to an attacker in a way that keeps the scenario going. For
example, the RL agent might learn to randomize certain system responses (to avoid pattern
detection) or to occasionally “sacrifice” a decoy component (letting the attacker feel they've
succeeded in stealing something) in order to increase the attacker’s confidence.

Threat Intelligence Collector & Analyzer: In parallel to attacker engagement, the system
includes a subsystem for data collection and analysis of everything the adversary does. All
decoy host logs, network traffic captures, and the sequence of attacker commands or malware are
funneled to a central analysis platform — this could be a SIEM like Azure Sentinel or a dedicated
analytics stack. Here we apply analytical models (some ML-based for anomaly detection and
correlation) to interpret the attacker’s behavior and extract useful intelligence. For instance, any
malware that the attacker uploads can be automatically detonated in a sandbox environment
(Azure provides cloud sandbox services or we integrate with tools like Azure Defender for
Endpoint) to see its behavior and identify signatures. The system can use ML classifiers to
recognize the malware family or threat actor toolkit. All of the attacker’s moves are tagged and
catalogued (e.g., “attacker used Mimikatz tool at 10:25PM to scrape credentials from decoy
memory”). This rich dataset is reported to the defensive operators in real time and stored for post-
mortem analysis. The insights feed back into both the security team’s knowledge and the Al
modules themselves — for example, new attacker techniques observed can become additional
training data for the RL agent (so it can handle them in future engagements), and can inform



updates to the generative models (e.g., to generate even more convincing decoy artifacts that
mimic the attacker’s tools’ outputs, further confusing them).

4. Orchestration & Control Layer: Overseeing the whole system is an orchestration layer that ties
together the digital twin model, the deployed cloud resources, and the AI components. This layer is
implemented through a combination of Azure services (Functions, Logic Apps) and custom control logic.
For example, an Azure Function can listen to events from Azure Digital Twins (such as a twin property
change indicating a decoy host has been marked “compromised” by the system) and then trigger
workflows in response. These workflows might notify the RL agent to adjust strategy, or even
automatically scale out part of the environment by deploying an additional decoy server to ensure the
attacker has more targets to explore. Another orchestrator routine periodically checks the twin model
against the actual deployed resources to ensure they remain in sync; if a discrepancy is found (say an
attacker managed to crash a decoy VM), the orchestrator can redeploy that node and update the twin state
accordingly to maintain the illusion of an intact network. The orchestration layer also manages snapshot,
reset, and restore operations: because the decoy environment will likely be compromised and
manipulated by attackers, we need a way to revert it to a clean state or create new instances quickly.
Using virtualization and [aC, the orchestrator can snapshot the state (or simply record needed state in the
twin model), and later automatically rebuild or reset portions of the environment (e.g., re-image a VM,
rotate credentials on decoy accounts) to recover from an engagement or prepare for a new one.
Importantly, the orchestration also interfaces with the defenders: we will provide a management console
or dashboard where cyber operators can monitor the decoy environment’s status and ongoing attacker
engagements. Through this interface, operators can also manually trigger certain actions or overrides if
desired. The system supports multiple modes of operation — from fully autonomous response to human-
in-the-loop control — as a safety and flexibility feature. For example, an operator could switch the decoy’s
response policy to “manual” for a particular high-stakes adversary, requiring analyst confirmation before
the decoy executes certain actions (like revealing a fake database). This ensures that decoy modifications
or actions in real time can be automated, semi-automated, or manual according to operational
preference, fulfilling the SBIR requirement for selectable levels of control.

5. Isolation and Safety Layer: Finally, to prevent any risk to real assets, the architecture includes strict
isolation measures. The decoy Azure virtual network is completely isolated from any production
networks — there is no peering, VPN, or shared connectivity between the decoy environment and the real
enterprise network. The decoy operates in its own Azure subscription or resource group that is treated as
untrusted relative to production. Any integration points for realism (such as ingesting sanitized real
telemetry into the decoy) are one-way and brokered through services that do not allow the decoy to
initiate connections back into secure networks. Credentials are not shared between real and decoy
systems; all user accounts, passwords, and keys in the decoy are fictitious or dedicated decoy credentials.
Thus, even if an attacker fully compromises the decoy, they gain no foothold in the real environment. We
also control outbound connectivity from the decoy to prevent an attacker from using the decoy as a
platform to attack external targets or discover the deception. Outbound internet access from decoy hosts is
funneled through a controlled egress point (such as an Azure Firewall) where traffic can be filtered and
monitored. If an attacker tries to launch an attack from the decoy (e.g., DDoS or spreading malware
externally), the security controls will detect and block it, or redirect such traffic to a sinkhole for
observation. This “managed interaction” approach means the attacker might believe they succeeded (for
example, their malware connects to their command-and-control server, but in reality it’s connecting to our



sinkhole logging service). Additionally, operational security steps are taken to avoid tipping off the
attacker that they are in a decoy. We remove or spoof any obvious cloud identifiers on decoy systems (for
instance, hiding Azure-specific service banners or metadata) so that the environment appears on-premises
and consistent with its story. The decoy systems are maintained just like real ones (regular updates,
normal user activity) with a careful balance: we intentionally leave certain vulnerabilities or
misconfigurations as bait, but in a controlled manner that we can monitor and contain. All decoy data is
fictitious (or synthesized from templates) to avoid any real sensitive information; any real data patterns
used for realism are heavily sanitized. Data collected from the adversary (logs, malware, captured traffic)
is stored securely and handled as sensitive information by our team. We also apply Azure’s security best
practices in managing the decoy environment itself: using least-privilege access for any management
components, isolating the operations team’s access, and monitoring the decoy’s health for any anomalies
that might indicate our simulation has been detected or is malfunctioning. In summary, this layer ensures
the decoy is a one-way trap: easy for attackers to get in, impossible for them to break out to anywhere
harmful.

In aggregate, the system architecture leverages Azure Digital Twins as the “brain” for modeling,
Azure’s cloud infrastructure as the body of the decoy network, and a suite of Al engines as the
“lifeblood” that animates this body with realistic behavior and adaptive deception. This layered design
ensures each aspect (modeling, deployment, behavior generation, orchestration, safety) can be developed
and refined independently, while Azure provides the scale and integration needed to run the complex
environment efficiently.

Detailed AI/ML Methodology

Achieving a truly convincing decoy network requires a multi-faceted AI/ML approach. Here we delve
deeper into how each AI/ML technique will be applied and how they work together to create an intelligent
deceptive environment.

Generative Models for Synthetic Traffic & Artifacts: Network Traffic Generation: We will train
specialized generative models to produce network traffic that closely emulates real-world patterns. One
candidate approach is to use time-series GANs such as TimeGAN, which are designed for sequential
data, to capture the joint distribution of network events (e.g., inter-arrival times, protocol mixes, packet
sizes). Another model we will experiment with is Doppel GANger, which has shown success in
generating multi-variate time series data with high fidelity by capturing both temporal patterns and cross-
feature correlations. Training data will come from benign network traffic captures (web browsing, DNS
queries, database transactions, [oT telemetry, etc.) in enterprise contexts. By training on a mixture of
normal traffic types, the generator can output synthetic traffic that retains key statistical properties of real
traffic (such as throughput distributions, bursty vs. steady flows, periodic heartbeat signals) without
exactly replicating any specific real sequence. During deployment, this generator will run continuously
(or at intervals) to inject fake traffic into the decoy network. For efficiency, we may not generate every
single packet via an ML model (which could be computationally intensive); instead, the model might
periodically output parameters or patterns for traffic flows, which are then enacted by lightweight scripts
or agents. For example, the GAN might output “start a 5-minute data transfer flow at 10 Mbps between a
file server and a client, with packet sizes following X distribution,” and an agent will then simulate that
flow with appropriate tools. This hybrid approach ensures realism while staying performant.



Host Logs and File Artifacts: Beyond network flows, attackers who gain deeper access (e.g., a shell on a
machine) will scrutinize system logs, running processes, file systems, and other artifacts for
inconsistencies. We will use generative techniques to populate fake log entries and file contents that are
statistically coherent with the system’s role. For instance, we can fine-tune a language model (like GPT-
style or other large language model) on a corpus of Windows Event Logs or Linux syslogs to generate
realistic log sequences. If an attacker runs wevtutil on a decoy Windows server, they would see a
believable history of login events, system errors, patches applied, etc., matching the supposed uptime and
usage of that server. Similarly, for file content, we can use GPT or similar models to generate dummy
documents (e.g., fake PDFs or Word files containing plausible but fictitious business content) relevant to
the decoy scenario. These Al-generated texts will be vetted to ensure they contain no real sensitive data
— they will be generic or entirely fictitious, but contextually appropriate (for example, if the decoy
company is “Acme Defense Corp,” documents might discuss fictional projects or internal memos that
seem credible). The key is to avoid any telltale markers of automation or emptiness; content should have
small imperfections or variations as real data does. We may also use GAN-like approaches for non-text
artifacts (e.g., generating user credential hashes that /ook real if an attacker dumps a password database,
using a model trained on known password leak datasets). Overall, generative Al will permeate the decoy,
filling it with synthetic but authentic-looking data at all levels.

Adversarial Resilience: Because we are using Al-generated content in a security context, we must
consider that skilled adversaries might attempt to use their own analytics to detect whether something is
Al-generated (for example, finding subtle anomalies in traffic or logs). To counter this, our generative
model training will incorporate adversarial resilience testing. We will simulate “attacker detectors” during
training — e.g., train additional discriminator models aimed at identifying fake vs. real by specific metrics
— and ensure our generators learn to fool not just a generic discriminator, but also these specialized
detectors. This could involve multi-objective training or adversarial training where we iteratively refine
the output until it passes a battery of realism checks (including tests in frequency domain characteristics
of traffic, log consistency over time, etc.) This reduces the chances of an attacker’s tool flagging the
environment as fake.

Reinforcement Learning for Adaptive Engagement: The reinforcement learning component is
essentially the decision-making engine that “plays” the role of the environment responding to an attacker.
We formalize the interaction between the attacker and the decoy as a sequential decision process (a
game). The state observed by the RL agent includes various aspects of the decoy environment and the
attacker’s progress: which decoy hosts are compromised, what techniques the attacker has used so far,
what alerts have been triggered, etc. The action space for the RL agent consists of the adaptive deception
actions we can take, as described in the architecture (deploy new decoy systems, modify responses, plant
breadcrumbs, throttle or sandbox the attacker’s actions, etc.) (network-decoy.md). We will design a

reward function that reflects the goals of engagement: the agent gets positive reward when the attacker
spends more time or reveals more capabilities, and negative reward for actions that might scare off the
attacker or end the interaction prematurely (network-decoy.md). For example, if the attacker continues to

run new commands (indicating they are still fooled), that’s positive; if the attacker suddenly stops activity
(potentially suspecting something), that’s negative. Training the RL agent will likely require creating a
simulated attacker to play against, or using prior recorded attack traces to evaluate agent decisions. We
can start with a simplified simulation (possibly using rule-based attackers or replay of known attack
patterns) to train a basic policy. As we gather real engagement data from the decoy (in Phase II trials or



red team exercises), we will incorporate that to further train or fine-tune the agent. An important aspect is
safety and sanity-checking the RL outputs: we will not allow the agent to take actions outside a
predefined safe set, and certain actions will require consistency checks. For instance, if the agent chooses
to spawn a new decoy server, the orchestration layer ensures it is properly configured and doesn’t
contradict the scenario (e.g., it wouldn’t spawn a second “CEQ’s laptop” out of nowhere because that
would be odd in the narrative). The RL-driven adaptation, as demonstrated in studies like HoneyloT, is
expected to significantly increase attacker engagement time and prevent attacker detection of the
honeypot by dynamically altering the environment in ways that mimic reality. Our implementation will
extend this concept to enterprise I'T and cloud networks, giving the decoy a continuously learning and
improving defensive posture.

Time-Series Analytics and Anomaly Detection: Time-series modeling plays a dual role in our system.
First, as noted, it underpins the generation of normal background behavior (predictable daily or weekly
patterns for network and user activity). Second, we will use time-series analysis for internal attack
detection and prediction within the decoy. While the decoy’s purpose is to engage attackers (so we
won’t shut them down as one would in a real network), we still want to algorithmically detect when a real
attacker is active in the decoy (as opposed to our own background simulation). Essentially, nearly any
deviation from the baseline pattern in the decoy is by design malicious, so our detection can be very
sensitive. We will use anomaly detection on system metrics and logs to flag the presence of an intruder —
e.g., if a decoy process begins executing unusual commands or a surge of network connections occurs that
wasn’t part of the generated background. These detections won’t alert the attacker, but will feed into the
orchestrator and RL agent to inform them that “the game is on.” Additionally, we can apply predictive
modeling to anticipate the attacker’s next moves to some extent. By analyzing sequences of attacker
actions and comparing them to known attack kill-chains or tactics (perhaps using a Markov Model or
sequence classification network), we can predict likely next steps (for example, after obtaining a user
password, the next typical step might be to attempt lateral movement to a specific server). The system can
then proactively prepare certain decoy elements — if we expect the attacker to move to a database server
next, the RL agent could ensure that server is ready and seeded with enticing fake data, improving our
readiness.

MLOps and Continuous Learning: Given the complexity of these Al components, we will follow
MLOps best practices to manage their lifecycle. Data from each attack engagement will be logged and
later used to retrain or improve the models. For instance, if an attacker found something in the
environment suspicious (causing them to disengage early), that’s a critical data point — we would adjust
the models or content to avoid that in the future. We plan periodic retraining or fine-tuning of the
generative models (GANs) and the RL policy using the latest data. Azure’s ML platform services (Azure
Machine Learning) can automate parts of this pipeline — triggering training jobs, evaluating model
performance (e.g., measuring how “real” the traffic looks via statistical tests or red team assessments),
and deploying updated models into the decoy environment. We will also incorporate feedback from expert
“white hat” operators (e.g., cyber red teams or subject matter experts) by having them test the decoy and
provide observations on what aspects felt inauthentic. Their insights will be used to further refine
scenarios and model parameters, effectively embedding human expertise into the Al training loop. This
continuous improvement cycle means the decoy network will get smarter and more realistic over time. As
attacker techniques evolve, our Al components will evolve in response — an online learning approach to
keep the deception consistently one step ahead of new detection methods.



Integration of AI Components: All these ML components will be integrated into the Azure-based
architecture via well-defined interfaces. For example, the traffic generator and user behavior models
might output “events” or scripts that the orchestration layer deploys to the VMs (like scheduling a login at
a certain time, or sending packets according to a certain pattern). The RL agent will likely run as a service
(possibly in a container or VM) that subscribes to a feed of security events (from the decoy’s monitoring
system) and issues high-level commands to the orchestrator (for instance, telling the orchestrator to
launch a new decoy instance or change a twin property that causes a certain behavior). We will ensure
these interactions are robust and timely — the decoy must react quickly to keep up with live attackers.

In summary, our AI/ML methodology focuses on two pillars: fidelity (making the decoy as realistic as
possible through generative modeling of normal behavior) and adaptation (making the decoy responsive
to threats through reinforcement learning and predictive analytics). By combining these, the decoy
environment becomes an ever-learning, dynamic counterpart to the real network — one that can engage
and fool adversaries while constantly improving its craft.

Infrastructure Deployment and Automation Strategy

A core requirement for this decoy solution is the ability to deploy, scale, and reconfigure it with minimal
manual effort. To that end, we adopt a fully automated cloud deployment strategy on Azure:

e Infrastructure-as-Code (IaC): The entire decoy environment — network, VMs, services, and
Azure Digital Twins instance — is defined in code (using Terraform scripts or Azure ARM/Bicep
templates). This means an operator can deploy the decoy with a single command or pipeline run,
and the resulting environment will exactly match the intended design. We are creating modular
IaC templates for different components (network segments, host types, data stores, etc.), which
take parameters from the digital twin model. For example, a “workstation” module template will
create a VM with the necessary specifications (OS image, decoy user accounts, fake data,
monitoring agent) and connect it to the appropriate subnet, guided by the twin model’s definition.
Using laC ensures consistency and repeatability — every deployment uses the same templates,
avoiding configuration drift. It also provides version control (we can track changes to the
environment blueprint over time) and easy rollback if needed.

e Continuous Integration/Continuous Deployment (CI/CD): We will set up automated pipelines
(using Azure DevOps or GitHub Actions) to manage the decoy environment lifecycle. Any time
we update the twin model or deployment code (for instance, to introduce a new type of server or
adjust a network policy), the pipeline can automatically apply these changes to the running decoy
environment. This enables rapid iteration and also quick recovery — if the decoy needs to be reset,
the pipeline can destroy and redeploy the entire environment fresh. In Phase 11, this pipeline can
also be triggered on a schedule or by an operator to routinely refresh the environment (for
example, nightly rebuilds to clear any persistent compromise an attacker may have left).

¢ Scalability & Elasticity: Because the decoy runs in Azure, we can leverage cloud scalability. We
can easily increase the size or complexity of the decoy network by adjusting parameters (e.g.,
deploying 100 decoy hosts instead of 50 across additional subnets) to simulate larger
environments if needed. The design also supports spinning up multiple decoy environments in
parallel if required. For example, if multiple separate threat actors are to be engaged
simultaneously (or to isolate different training scenarios), we could deploy separate instances of



the decoy network (in separate Azure resource groups or even separate Azure subscriptions) using
the same [aC templates. Azure’s ability to rapidly provision resources means we can isolate each
adversary in their own decoy “sandbox” without them ever knowing there are other decoys. We
can also incorporate auto-scaling rules for certain decoy components; for instance, if the attacker
launches a denial-of-service attack on a decoy web server, Azure could automatically spawn
additional decoy web server instances to absorb the traffic, maintaining the illusion of a resilient
infrastructure.

e Monitoring & Maintenance Automation: We treat the decoy environment as a production
system from an SRE/DevOps perspective. Azure Monitor will track the health and performance
of all decoy components (CPU usage on VMs, memory, disk, network /0, etc.). If any
component crashes or behaves unexpectedly (not due to attacker activity but due to a bug or
resource exhaustion), automated scripts or functions can attempt to restart or redeploy that
component. We will implement automated maintenance tasks via Azure Functions or Automation
Runbooks — for example, periodically seeding new fake data (rotate decoy file content, change
dummy user passwords on schedule) so that the environment never becomes stale. These tasks
and checks are also defined as code, ensuring reliability. When we need to update the decoy
software (say we improve the agent code or Al models), we can utilize a blue-green deployment
approach: deploy a second instance of the decoy environment with the updated software, test it,
then switch attacker traffic to it (e.g., by manipulating DNS if the attacker’s point of entry is via a
domain name) and decommission the old instance. This avoids disrupting an engagement while
still allowing upgrades.

e Security Automation: Security guardrails are built into the deployment process itself. For
example, the [aC templates will include Azure Policies or configuration that ensure no
management ports (SSH/RDP) are left open except what’s intentionally part of the deception, and
that the decoy VMs only use the virtual network we set (to avoid any accidental connection to
real subnets). The Azure Digital Twins instance is deployed with strict access control (using
managed identities and role assignments) so that only our decoy orchestrator service can query or
modify it, preventing even a compromised decoy VM from directly interfacing with the twin
management plane. We also leverage Azure Key Vault for any sensitive secrets (though the decoy
is mostly self-contained with fake credentials, any service keys for Azure APIs or certificates for
decoy servers will be stored securely). In short, the same automation that makes deployment easy
also enforces the security isolation by design, reducing the chance of misconfiguration that could
expose the deception.

By using automation at every step — from environment provisioning to runtime operations — we meet the
SBIR objective of maximal efficiency with minimal manual input. An operator could deploy a complex
decoy that mirrors a real network’s blueprint in minutes, and the system can automatically keep it running
and adjust it as needed. This also makes the solution portable and repeatable: the decoy can be deployed
at different locations or tweaked for different network scenarios by modifying the twin model and
rerunning the IaC pipeline, without rebuilding everything from scratch.

Security Considerations



Designing a cyber deception environment that actively invites adversaries requires careful controls to

manage risk. Key security considerations and our mitigation approaches include:

Isolation from Real Systems: The decoy network is completely isolated from production
networks and data. It operates in a separate Azure environment with no inbound or outbound trust
to real systems. Any data imported for realism (e.g., statistical patterns from production logs)
flows one-way into the decoy and never includes actual sensitive information. Credentials used in
the decoy are unique to it; even if stolen by an attacker, they are useless outside the decoy.

Preventing Malicious Use of Decoy: We prevent attackers from leveraging the decoy as a
stepping stone to harm others. Outgoing traffic from the decoy to the internet is tightly controlled
(via firewall rules and monitoring). We allow just enough outbound connectivity to make the
decoy convincing (e.g., letting a decoy host perform Windows updates or an attacker download
their tools) but we intercept anything clearly malicious. If an attacker tries to launch attacks from
the decoy, those packets can be dropped or diverted to a sinkhole under our control. This way, our
decoy doesn’t become an unwitting accomplice in cybercrime.

Avoiding Attacker Detection of the Decoy: Operational security (OPSEC) is maintained so that
attackers remain unaware they are in a fake environment. We scrub obvious cloud fingerprints
from the decoy hosts — for instance, removing Azure-specific agent identifiers, using internal
hostnames and IP schemes that look like a typical enterprise (no “.cloudapp.net” addresses, etc.).
The decoy systems generate normal system noise (CPU load, memory usage, patch levels)
consistent with real machines. We will even introduce some intentional imperfections (like a
slightly misconfigured server or an outdated software version) to avoid an overly pristine
environment that might arouse suspicion. Those intentional weaknesses are carefully chosen and
isolated so that when the attacker exploits them, they don’t jeopardize control of the decoy.
Essentially, we make the decoy “imperfect” in realistic ways to serve as believable bait.

Protecting Collected Data: All information gathered from attacker interactions (e.g., keystrokes,
files, tool output) is stored in a secure repository accessible only to authorized defenders. Though
the decoy data is fake, the attacker might inadvertently provide real stolen data or sensitive tools
during their operation, so we treat the collected data as sensitive. It will be encrypted at rest, and
any sharing of the threat intelligence outside our team will be done carefully (sanitizing any
references that could reveal the decoy’s identity or techniques to the attacker).

Cloud Security & Hardening: We apply strict security to the Azure infrastructure hosting the
decoy. Only our decoy management services (or admins) have credentials to the Azure
subscription running the decoy; regular IT admins of the real network have no access (preventing
them from accidentally exposing the deception). Within Azure, we use least-privilege roles for
each component; e.g., the RL agent service might only have permission to send commands to a
queue and read certain logs, nothing more. We avoid direct manual administration of decoy VMs;
all actions go through our orchestrated pipelines, leaving less room for human error that could tip
off an attacker (for example, an admin login appearing in logs unexpectedly).

Handling Multiple or Persistent Threats: If multiple attackers end up in the decoy at different
times, we ensure one won’t see traces of another. After an engagement, the decoy can be
automatically reset or rebuilt (wiping any backdoors the attacker may have left). If simultaneous,



we isolate them in separate decoy instances. This prevents attackers from detecting “noise” or
alterations caused by other intrusions.

e Operational Monitoring of the Decoy: We monitor the decoy environment itself for signs of
trouble — not just attacker activity, but issues like an attacker possibly detecting the decoy. For
example, if our normally active decoy processes stop (maybe the attacker managed to kill our
simulation agent on a host), that’s an anomaly we detect and respond to (perhaps by restarting the
agent or spawning a replacement host). Our team maintains OPSEC when interacting with the
decoy: analysts will not log into decoy machines in obvious ways or leave any artifacts that an
attacker could find. Communication about the decoy is done out-of-band. We treat running the
decoy like running an intelligence operation, where stealth on the defender’s part is also
important.

By addressing these considerations, we ensure that the decoy network yields maximum defensive value
(engaging and observing adversaries) with minimal risk. The decoy is a controlled environment where
attackers can be allowed to “play” freely, but that freedom ends at the decoy’s boundaries.

Use Cases

To illustrate the practical utility of the Al-driven digital twin decoy network, we describe several
representative use cases:

Use Case 1: APT Lateral Movement Trap (Enterprise Scenario). A large enterprise suspects it is
targeted by an Advanced Persistent Threat (APT) group. The company deploys the decoy network to
mirror a particularly sensitive segment of its real network — for example, the R&D subnet where valuable
intellectual property is stored. The decoy is populated with enticing fake documents (e.g., project plans or
schematics generated to look authentic). If the APT breaches the perimeter of the real network and begins
lateral movement, the deception system quietly redirects the attacker into the decoy environment (using
techniques like ARP spoofing or DNS manipulation on compromised hosts to point them to decoy servers
instead of real ones). Once inside the decoy R&D network, the attacker encounters what appears to be the
real environment: machines and file shares with expected naming conventions, user accounts, and data.
The Al-driven behavior engine ensures that everything responds consistently and normally — the attacker
can even perform actions like opening files or running network scans without raising suspicion. Suppose
the attacker exfiltrates the fake documents, believing they hit the jackpot. Meanwhile, the defenders have
silently recorded the entire kill chain: the tools used, exploits attempted (perhaps even a zero-day), and
the exact data exfiltration path. All of this intelligence is invaluable — the defenders can now remediate
those attack vectors in the real network (e.g., if a previously unknown exploit was used, they can apply
virtual patches or enhanced monitoring in the real environment). In this scenario, the decoy both protected
the real “crown jewels” by diverting the attacker and provided a detailed forensic record of the APT’s
tactics. This information can be shared within the industry or with government agencies to bolster
collective defense.

Use Case 2: Threat Hunting & Intelligence Collection (Government/Defense Scenario). A
government cyber defense team or defense contractor sets up the decoy network as a threat intelligence
honeynet. They configure the decoy to resemble a small defense contractor’s network, complete with
faux project names and email accounts. They then deliberately “leak” the existence of this network in
forums or via phishing campaigns (for instance, they allow certain phishing emails to successfully phish



credentials that only work on the decoy). This attracts state-sponsored hackers interested in defense
secrets. When an attacker uses those stolen credentials to VPN into the decoy, they believe they have
breached a real defense contractor. The decoy then observes the attacker’s post-compromise behavior:
reconnaissance, attempts to escalate privileges, and so on. The RL agent in our system notices, for
example, the attacker looking for domain admin privileges, and dynamically “reveals” an enticing new
target: a decoy domain controller containing references to classified projects (all fake). The attacker goes
after it, thinking it’s pivotal. Every action is logged, and when they attempt to dump credentials or
exfiltrate data, silent alarms notify the defenders. Over a period of weeks, the threat actors continue to
operate in the decoy, believing they have a foothold, while the defenders collect extensive intelligence on
their tools (every malware sample, every command and IP address they use). The defenders can even feed
misinformation back to the attackers (for example, fake documents that the adversary might incorporate
into their reports). This use case demonstrates the decoy’s value for counter-intelligence: it provides a
controlled environment to monitor, study, and even deceive adversaries with minimal risk. Real-world
analogues, such as Microsoft’s use of fake Azure tenants to study phishing attackers, have proven the
effectiveness of such techniques.

Use Case 3: Insider Threat Detection (Internal Security). Not all threats come from the outside;
malicious insiders or compromised internal accounts pose serious risks. The decoy network can be
deployed within an organization as a hidden sensor for insider activity. For example, the security team
sets up a decoy fileshare or database that is made to look highly sensitive (e.g., labeled “Executive Salary
Data” or “Acquisition Plans”), and makes it visible internally (perhaps mentioned on an internal wiki or
directory). A normal employee would ignore it, but a malicious insider might attempt access out of
curiosity or ill intent. When they do, they are interacting with the decoy environment. The system
monitors their behavior: maybe they start running unusual queries or trying to siphon data. Because the
decoy is isolated, even if the insider tries something destructive (like planting malware or creating new
user accounts), it only affects the fake environment. Meanwhile, security is alerted in real time to this
activity and can gather evidence of the insider’s actions. The decoy can even adapt — for instance, once
the insider is hooked, the RL agent might introduce a fake admin credential or additional secret data to see
if the insider takes the bait, further incriminating themselves. This use case shows how deception
technology can augment internal monitoring by catching suspicious behavior that slips past normal
controls (an insider with legitimate access would not trigger an IDS by simply using their permissions,
but they would reveal themselves by accessing a honeytoken resource). The advantage is that we catch
the insider in the act within a contained environment, preventing real damage while gathering evidence of
misconduct.

Use Case 4: Critical Infrastructure / ICS Protection. In industrial control system (ICS) or critical
infrastructure settings (power grids, water treatment plants, etc.), running live experiments or allowing
adversary interaction with real systems is obviously dangerous. A digital twin decoy network can mimic
an ICS environment for such facilities. Using Azure Digital Twins, we can model not just IT components
but also IoT sensors and controllers. For instance, a water treatment plant decoy might include virtual
programmable logic controllers (PLCs), Human-Machine Interface (HMI) systems, and simulated sensor
readings (tank levels, pressure, chemical rates) generated by a GAN trained on normal operational data. If
a threat actor (like those behind Stuxnet or TRITON malware) targets the facility, they can be diverted
into the decoy, which replicates the control network. The attacker might attempt destructive actions (e.g.,
changing a pump’s operation or altering chemical injection levels). The decoy will respond as if those



commands are taking effect (the fake sensor data changes accordingly to show, say, chlorine levels
rising), giving the attacker the impression of success. In reality, no physical process is impacted. The
defenders, however, get to observe exactly what the attacker tried to do — what malware they deployed,
what safety systems they tried to override — all without risk to the real plant. This provides invaluable
insight into threats against critical infrastructure. After the engagement, the facility can improve its actual
security (patching the exploited vulnerabilities, strengthening network segmentation, etc.) based on the
decoy incident. This use case demonstrates proactive defense for critical systems: we create a full
replica of an ICS environment as a battleground where we can safely engage nation-state actors and learn
from them, protecting the real-world processes from harm.

These use cases highlight the versatility of the proposed decoy network. It can be tailored to enterprise IT,
government networks, insider scenarios, or even industrial systems — any context where understanding
and thwarting sophisticated threats is a priority. In each case, the decoy provides a safe environment to
detect, engage, and study adversaries while shiclding real assets from damage.

Phase I Work Plan and Phase II Goals

Phase I (Feasibility Study & Prototype Design): In Phase I, we will demonstrate the feasibility of the
concept and develop a proof-of-concept decoy environment with key Al components. The main objectives
include:

1. Network Digital Twin Modeling: Define a representative enterprise network segment (in
collaboration with stakeholders) and build an initial Azure Digital Twins model capturing its
assets and relationships as the decoy blueprint.

2. Prototype Decoy Deployment: Use [aC to deploy a small-scale decoy network on Azure (a
handful of VMs/services). Implement preliminary Al components — e.g., train a basic GAN on
sample traffic to generate network noise, and set up a rudimentary RL agent framework — to
validate that Al-driven behavior can be injected and managed in the cloud environment.

3. Initial Attack Simulation: Simulate an attacker scenario (via a red team exercise or automated
penetration test) against the prototype. Demonstrate that the decoy generates realistic background
activity and that the attacker can be lured and observed. Evaluate the prototype’s performance
(realism of deception, data captured) to identify any glaring gaps.

4. AI/ML Methodology Validation: Conduct experiments to validate the chosen Al approaches.
For example, train the GAN on available enterprise traffic data and assess realism, and run the RL
agent in a simulated environment to ensure the formulation (state, actions, rewards) leads to
reasonable strategies. Refine the design based on results.

5. Reporting & Phase II Planning: Deliver a feasibility report documenting the Phase I prototype,
results of the attack simulation, and lessons learned. This report will include the refined system
architecture and AI/ML design for the full system, and a detailed Phase II execution plan (tasks,
timeline, risk mitigation).

By the end of Phase I, we will have a working prototype and detailed design that de-risks the key
innovations (Azure Digital Twins integration and Al-driven deception), setting the stage for building the
full system in Phase II.



Phase II (Full System Development & Demonstration): Phase 11 will build the complete decoy
network platform and demonstrate it in a realistic environment (targeting TRL 6).

1. Complete System Implementation: Expand the digital twin model and [aC deployment to a full
enterprise-scale decoy network (e.g., dozens of decoy hosts across multiple subnets). Fully
implement all Al components: train robust GAN models on large, relevant datasets to cover
diverse network behaviors, deploy the RL agent with a refined policy (incorporating Phase |
findings), and integrate the user behavior simulation and threat intelligence pipeline.

2. Integration and System Testing: Integrate the AI/ML modules with the cloud environment and
orchestration layer. Rigorously test end-to-end functionality — ensuring the decoy can deploy with
one command, that background activities run correctly, that the RL agent can ingest telemetry and
issue adaptive responses, and that the operator dashboard effectively displays events and allows
control. Iteratively improve stability and performance through testing.

3. Realism Refinement and Security Hardening: Perform extensive red-team testing to uncover
any signatures or patterns that might reveal the decoy. Tune the generative content and system
configurations to eliminate those telltales. Apply security hardening in the Azure environment
(lock down accounts, network paths, and ensure compliance with Air Force cybersecurity
policies). Prepare documentation/artifacts needed for Authority to Operate (ATO) as applicable.

4. Sandbox Demonstration (TRL-6): Deploy the Phase II prototype in a realistic sandbox or test
network provided by the Air Force. Conduct a live demonstration involving a sophisticated attack
scenario. Show that defensive cyber operators can use the software to generate a decoy network
on the fly and that the system successfully deceives and contains a simulated APT. We will
demonstrate real-time tracking of the adversary and dynamic decoy adaptations, as well as the
ability for operators to intervene (proving the human-in-the-loop control features). This validates
the solution in an environment approximating operational conditions.

5. Evaluation & Transition Preparation: Evaluate the Phase II results by measuring key metrics
(deployment time, attacker dwell time in decoy, number of TTPs captured, etc.) and collecting
operator feedback on the tool’s usability and effectiveness. Using these insights, refine the system
as needed. Develop a transition roadmap for Phase I1I, outlining steps to deploy the technology in
an operational Air Force network (including any integration with existing tools like SIEMs or
SOAR platforms) and identifying potential early adopters in other Air Force units or DoD
organizations. We will also outline commercialization plans for dual-use applications in the
private sector (e.g., offering the decoy system as a managed security service for critical
infrastructure companies).

By the end of Phase 11, we will deliver a fully integrated prototype software application that meets the
SBIR objectives: enabling operators to easily deploy realistic, dynamic decoy networks and effectively
track and control adversary engagements in real time. This prototype will be demonstrated in a relevant
environment, providing confidence in its operational value and paving the way for Phase III transition.



Strategic Impact and Future Applications

Adopting Al-driven digital twin decoy networks represents not just a new tool but a strategic shift in
cyber defense posture for the Air Force and beyond. Some of the broader impacts include:

Proactive Defense and Deterrence: This technology enables a move from reactive cybersecurity
(responding to breaches after they’re detected) to proactive engagement. By deploying decoy
environments, defenders take the initiative — threat actors are not just detected, but actively
drawn into a controlled battle space where the defenders hold the advantage. If state-sponsored
hackers repeatedly waste time and expose secrets attacking elaborate decoys, it imposes a cost on
them. Over time, widespread use of such deceptions can have a deterrent effect: adversaries
become more cautious, slow down their operations, or even avoid targeting organizations known
to employ advanced decoys. In military terms, it’s like laying minefields and traps in cyberspace
— attackers must advance carefully, reducing their momentum and increasing their chances of
missteps.

Intelligence-Driven Security: The threat intelligence gained from these decoy engagements is
extremely valuable. We get direct insight into adversaries’ tactics: their zero-day exploits, their
command-and-control infrastructure, their target priorities. For Air Force cyber units, this means
knowing the enemy’s playbook in advance. Patterns observed in the decoy can inform the defense
of real networks (e.g., if an attacker consistently goes after a certain type of system or uses a
novel malware strain, the real network can be hardened accordingly). On a broader scale, this
intel can be shared across the DoD and intelligence community. One organization’s decoy “catch”
can help protect others — akin to vaccine development by analyzing a virus in a lab environment.
This collective benefit enhances national cyber defense. It also supports active counter-
intelligence: by understanding who is attacking and what they’re after, the DoD can coordinate
responses or even feed disinformation back to adversaries to confuse their efforts.

Enhanced Resilience and Continuous Learning: Deploying a digital twin decoy cultivates a
culture of continuous security improvement. Every attack on the decoy is essentially a free
training exercise for the defenders — it’s an opportunity to learn and adapt without suffering
damage. Organizations can use the decoy to test their own incident response processes (since they
can practice on decoy incidents that feel real). The constant stream of threat data ensures defenses
stay up-to-date against the latest tactics. Over the long term, this can significantly improve
resilience, as the organization is always one step ahead, having seen tomorrow’s attack techniques
in their decoy yesterday.

Synergy with Zero Trust and Defense-in-Depth: The decoy approach complements modern
Zero Trust principles. Zero Trust operates under “assume breach” — and a decoy is a perfect
component for the “assumed breach” scenario, giving an intruder a place to go that is not the real
crown jewels. In a layered defense, the decoy can act as the last line (or an inner diversion) that
catches attackers who somehow penetrated other layers. It adds an unpredictable element to the
defense-in-depth strategy, something adversaries cannot easily account for in advance.

Psychological Impact on Adversaries: Strategic use of deception introduces uncertainty for
attackers. When high-end adversaries begin to suspect that some of their targets might actually be
elaborate decoys, it forces them to question the reliability of the data they stole and the safety of



their footholds. This can slow their operations and sow doubt. Historically, deception has been a
powerful tool in warfare (for example, the use of fake armies and misinformation in WWII); in
cyber warfare, our solution provides that capability at network scale. There is also the opportunity
for counter-offensive actions: if adversaries act on fake data from a decoy, it can be a means to
expose their intentions or even lead them into traps (e.g., malware in fake documents that phone-
home from the attacker’s system, revealing their location).

e Force Multiplication for Cyber Defenders: Automation and Al in the decoy mean a small
defensive team can handle many more incidents effectively. Instead of chasing ghosts in their real
network, one analyst can monitor multiple adversary engagements in the decoy simultaneously,
since the heavy lifting of response is largely automated. This scales the capacity of cyber defense
teams and makes better use of skilled human operators. The return on investment could be
substantial — preventing a single major breach can save millions, and our approach aims to
prevent or mitigate multiple.

¢ Dual-Use and Commercial Potential: While the immediate application is Air Force networks
facing nation-state threats, the technology has broad dual-use potential. Other DoD agencies,
government networks, and even critical infrastructure industries (energy, finance, healthcare) are
all targets of advanced cyber attacks and could benefit from autonomous decoy networks. In the
commercial sector, large enterprises increasingly face APT attacks as well (e.g., espionage against
tech companies). Our solution could be productized as a cybersecurity platform or cloud service
for companies that need to protect high-value data. This aligns with Phase III goals of
commercialization — the platform could be offered (with appropriate customization) to any
organization looking to bolster its cyber defenses with active deception. By leading in this area,
the Air Force can also shape best practices and standards for cyber deception operations,
maintaining technological leadership in cybersecurity.

In summary, the proposed project not only promises a powerful tool for tactical cyber defense (catching
attackers in the act), but also contributes to a strategic advantage. It changes the cost calculus for
adversaries, yields continuous intelligence, and amplifies the effectiveness of cyber defenders. Successful
implementation and deployment in the Air Force could serve as a model for wider adoption, ultimately
raising the bar for cybersecurity across both the military and civilian domains.



Conclusion

We have proposed a Phase I/I1 effort to develop an autonomous, AI/ML-driven digital twin decoy
network that aligns closely with the objectives of topic AF252-0005. By combining Azure-based digital
twin modeling, cloud automation, and advanced Al techniques, our approach will enable the Air Force to
automatically generate highly realistic decoy networks that can deceive state-sponsored adversaries,
monitor their activities in real time, and adaptively respond to maintain the illusion. The system
architecture and Al methodology have been detailed to show technical feasibility, and a clear plan is laid
out to build and demonstrate the capability in a Phase II prototype.

In essence, this project will deliver a paradigm shift in cyber defense: instead of only hardening networks
and waiting for alarms, we create an active digital battleground where we invite the adversary in, control
the narrative, and turn their attack into a source of intelligence. The proposed decoy network will provide
maximum automation in deployment and management, unprecedented realism through Al-driven
behavior, thorough adversary tracking via integrated monitoring, and real-time control through
autonomous agents and operator-in-the-loop options. This enables defensive cyber operators to engage
threats on their terms.

By investing in this cutting-edge deception technology, the Air Force can significantly enhance its cyber

resilience and gain insights into attacker tradecraft, all while safeguarding real operations. Success in this
SBIR effort will pave the way for operational deployment (Phase I11) and potential adoption across DoD

and critical industries, marking an important step toward outpacing and outsmarting cyber adversaries.



