A GENERALIZED COMMODITY BARTER EXCHANGE
ENGINE

ABSTRACT

This document describes a prototype barter exchange system where users buy and sell commodities without using
an exchange medium. This system includes mechanisms for finding best available price and multi-tiered
transactions.

DATA MODEL

?

es
Column Name
CommoditylD
CommodityName

Symbol

Data Type
int
varchar(100)

varchar(5)

Allow Nulls
[m]

[m]
O
O

888

OrderLeg

Column Name:
@ OrderLegID

OrderiD

BuyerUseriD
CommoditySelliD
CommodityBuyID
SellQuantity
BuyQuantity

Commission

AskiD

CommissionCommdoit...

Data Type
uniqueidentifier
uniqueidentifier
uniqueidentifier
int

int

bigint

bigint

int

bigint

bigint

Allow Nulls

Oooooo0oooooog

!

Orders

888

Co

?

Column Name Data Type Allow Nulls
% OrderlD uniqueidentifier O
UserlD uniqueidentifier O
OrderDate datetime 0
CommodityBuylD int O
CommoditySelllD int]
CommissionCommodity... int 0
Commission bigint O
AskiD bigint O
|
Users
% UserlD
UserName
Email

Asks

Column Name
AskID
UserlD
CommoditySelllD
CommodityBuylD
SellRatio
BuyRatio
BuyQuantity
SellQuantity
AllowPartialFill

ApplyC
AskDate
ValidToDate

ToBuy

MinBuyQuantity

MinSellQuantity

StartBuyQuantity
StartSellQuantity
MaxLegDepth

Data Type
bigint

uniqueidentifier

datetime
datetime
bigint
bigint
bigint
bigint

int

Allow Nulls
O
O

oog

]
]

v

8 8
AskLegs
Column Name Data Type Allow Nulls
R AskLeglD bigint
AskiD bigint
BuyCommoditylD int
SellCommoditylD int
BuyRatio bigint
SellRatio bigint
MinBuyQuantity bigint
MinSellQuantity bigint
ApplyCommissionToBuy bit
AvailableBuyQuantity bigint
AvailableSellQuantity bigint
StartingBuyQuantity bigint
StartingSellQuantity bigint

ASK STRUCTURE

An Ask is a user request for an Order of commodities. Asks must contain either a Buy or a Sell Commaodity, if they
contain both a Buy Ratio and Sell Ratio must be specified. If either the Buy or Sell commodity is not set
corresponding Ask Legs must be set. A Sell Quantity or Buy Quantity must also be specified, if sell commodity is not
set a Sell Quantity cannot be specified and the same for buy quantity and buy commodity. Sell Quantity and Buy
Quantity will be adjusted for partial fill Asks as they’re processed. All quantities are integers as the barter units
cannot be fractional.

Asks can be a partial fill or not, asks that are not a partial fill will not be processed if the full quantity is not
available on the market place at the requested buy ratio.

Min Buy Quantity can be populated if there is a Buy Commodity and Min Sell Commodity can be populated if there
is a Sell Commodity. It is a good idea to populate these with partial fill asks corresponding to the commission as the
commission applied to a small quantity will be vastly overstated.

Max Leg Depth defines how many commodity tiers will be attempted when finding potential orders with the best
buy ratio. A higher max leg depth may result in more options and a better price but it takes longer to process. The
Ask can also specify that the commission is applied to the buy commodity, if this is the case the commission will be
subtracted from the order; if the commission is applied to the sell commodity the seller must provide additional
commodities. It is generally a good idea for positive buy ratios to include the commission in the buy because the
commission percentage is rounded up and the greater the quantity the closer to the commission is to the ideal
rate.

Start Buy Quantity or Start Sell Quantity will be populated if the corresponding Sell or Buy Quantity is populated,
this is for accounting and reconciliation purposes. Ask Date will also be automatically populated at the time of
Order request.

ASK LEG STRUCTURE

Asks’ can have ask legs, this allows an order request where the user is buying a commodity but willing to sell
multiple commodities or selling a commodity and willing to buy multiple commodities. The Ask Leg’s Buy or Sell
Commodity must be set, and the corresponding Ask’s Buy or Sell commodity must be not set. The Buy Ratio and
Sell Ratio must be set, the ratio is in terms of that leg to the parent ask.

Optionally Available Quantity Buy or Available Quantity Sell (depending on if it’s a buy or sell ask) can be set to
inform the engine the max quantity that can be transacted, these are updated as orders are processed. If they are
set the corresponding Starting Quantity will be set for accounting purposes.

Like the parent ask, Apply Commission to Buy can be set.

ORDER STRUCTURE

An order is a transaction for a user buying a commodity and selling another. The Order is tied back to an Ask for
accounting purposes. It contains a reference to the Commodity being bought, sold and commissioned and the
commission for the order.

ORDER LEG STRUCTURE

Order Legs are the actual transactions comprising an order, an order must have at least one leg and must have at
least one leg with the buy commodity of the order and the sell commodity of the order. Order legs define the

commodity being sold and bought, the sell quantity and buy quantity, the commission commodity that the seller is
paying and the commission quantity and a reference to the seller.

EXAMPLE

Assume all are partial fill.

EXISTING ASKS

\ Buy Commodity Sell Commodity Buy Ratio Sell Ratio Buy Quantity Buy Ratio
Gold Silver 20 1295 1000 0.015
Gold Silver 15 1295 1000 0.012
Silver Platinum 1466 20 1000000 73.3
Platinum Copper 3 1466 100000 0.002

ASK TO EXECUTE

\ Buy Commodity Sell Commodity Buy Ratio Sell Ratio Buy Quantity
Copper Gold 1294 3 1000000

EXECUTED ORDER LEGS

\ Buy Commodity Sell Commodity Buy Quantity Sell Quantity Sell Ratio
Silver Gold 86333 1000 0.012
Silver Gold 63713 984 0.015
Platinum Silver 2047 150046 73.3
Copper Platinum 1000000 2047 0.002

The Ask was successfully executed with 1984 gold sold for 1000000 copper. With a buy ratio of 504 versus the 431
in the quote, this is because there is a favorable ask in there for Gold for Silver that was prioritized by the engine.

ALGORITHM

act Execute Ask /

Ask requests fr

Set Lock Execute
Quantity (prev ents other

this ask)

For Each Proposed
Order Leg
Collection in

om using

For each Sell
Commodity

Bag

S

Get Asks where Buy
Commodity is this Sell
Commodity

Build Order Legs for Sell Commodity targeting Buy Commodities

Get Asks where (leg
level < max leg depth ||
sell commodity is in buy

For Each Group of Asks by
Sell Commodity

Buy Quan
on Ask

Build Proposed Order for
sell S22

Remov e Worst Proposed
OrderLeg o o

Build Proposed Order

tity Set

Not Market Order and
Allow Partial Fill and
Proposed Order is
Valid

commodi.ty) and current Build Proposed Order \

commodity tree doesn't

contain a sell entry for Clone Proposed Order

this commodity
Commodity Sell ID of
Askisin target Buy
Commodities
Add Asks in Group to
TreEmE: e Level Build Proposed Order Proposed Order
Legs for Asks in the
Proposed Order and add
the to the Bag
(More than one Buy Commodity or the
Commodity is not in the Buy Commdoities) al
leg level < max leg Depth
(N J
N
Build Proposed Order For
Buy oo
Remov e any Proposed
Order Legs with Zero Build Order
Buy or Sell Quantity
oo

HIGH LEVEL

The first step in the algorithm of executing an ask or getting a quote is setting the asks Lock Execute Quantity equal
to the available quantity of the Ask. Available Quantity is defined as the Ask’s Buy or Sell Quantity minus Lock
Quantity (the amount currently being used by other potential orders) minus Lock Execute Quantity.

Then the engine attempts to find commodity trees which will represent Proposed Orders. For each Commodity
that can be sold by the Ask it will enter a recursive function that builds a tree of commodity buy/sell combinations
that result in a sale of the commodity id and a buy of one of the commaodities that can be bought. This is described
in the diagram above under “Build Order Legs for Sell Commodity targeting Buy Commodities”.

Then for each commodity tree it will attempt to build a Proposed Order. Depending on whether the ask being
executed or quotes has a buy or sell quantity it will enter different logic to build the initial Proposed Order.

For non-market orders that allow partial fill and are valid the engine will attempt to remove Proposed Order Legs
until the Proposed Order’s Buy Ratio (Proposed Quantity Buy / Proposed Quantity Sell) is greater or equal to the
Ask’s Real Buy Ratio (Buy Ratio / Sell Ratio). Valid Orders are defined as those where the Order Quantities are in
sync (the corresponding buy and sell order leg quantities for the same commodity are equal), there contains at
least one order leg that has a Sell Commodity in the Ask’s Sell Commodities, there contains at least one order leg
that has a Buy Commodity in the Ask’s Buy Commodities and Proposed Quantity Buy and Sell are greater than zero.

After the proposed orders are built the final order will be built from the best (by Buy Ratio) Proposed Orders. This
will be detailed later.

If it is an execute the locks will be realized and the available quantities on the Ask and Ask Legs adjusted according
to the order.

BuiLD PROPOSED ORDER FOR Buy

act Build Proposed Order For Buy/

For Each Proposed Order Legs grouped by Leg
Level Order By Leg Level desc (Buy first)

Fill Proposed Order

Fill Proposed Order Legs
For Buy

Requested Buy Quantity > Proposed Buy Quantity

Rebalance Order Legs
for Buy

Has Previous Leg Level Proposed Order Legs

Clear Proposed Order
Legs (sets the quanities
to zero and unlocks the
ask)

Set Requested Buy
Quantity to Proposed Sell
® Quantity

:Fill Proposed
Order Legs For

Buy I'h

For a buy ask the Buy Quantity must be applied to the commodity tree first since the final Buy Ratio is market
driven and therefore the Sell Quantity is derived from the order itself. The engine groups the Proposed Order Legs
by Leg Level and orders them descending; leg level is an indicator of where in the tree the Proposed Order Leg is
with 1 being a sell and the max number being the buy. The Requested Buy Quantity for the first iteration is the
order quantity of the order.

The First step is to “Fill Proposed Order Legs for Buy”, this will attempt to fill, based on each Proposed Order Leg’s
Ask’s Available Quantity, the order from a buy perspective. If Requested Buy Quantity is greater than the sum of
Proposed Buy Quantities of the Filled Proposed Order Legs then the order must be rebalanced, unless it’s the first
iteration and then it is not necessary. The “Rebalance Order Legs for Buy” method iterates over all previously built
Order Leg groups and adjusts their quantities downward to reflect the short fall in the current iteration. The
current iteration’s Proposed Order Legs are cleared and recalculated from the new sum of the previous order leg’s

sell quantity.

The Requested Buy Quantity variable is then set to the Proposed Sell Quantity of the current iteration and the next
group of legs is processed.

FiLL PROPOSED ORDER LEGS FOR Buy

act Fill Proposed Order Legs For Buy/

For Each Proposed Order Leg
ordered by AsKs Buy Ratio then by
Ask Date

Fill Proposed Order Leg

:Set Proposed
:Set Ask Sell Order Leg Buy Subtract Proposed Buy
Quantity Quantity = Sell Quantity from requested
Quantity buy quantity
(calculates
Proposed Sell
Quantity from Ask
Ratios) I'I'I

Total Buy Quantity <= 0

The Total Buy Quantity starts out at the target buy quantity for the Order Leg from the previous iteration or initial
Ask Quantity. The engine orders the Proposed Order Legs by the Order Leg’s Ask’s Buy Ratio (lower being more
favorable to the requester of the quote) and then by Ask Date and iterates over them. It attempts to set the Ask’s
Sell Quantity equal to the Buy Quantity of the Order Leg, the Ask is in reverse because it is the other side of the
order leg being executed. The Proposed Order Leg’s Proposed Buy Quantity is then set to the quantity calculated in
the “Set Ask Sell Quantity”. The Proposed Buy Quantity is then subtracted from the requested buy quantity and
processing continues until the Requested Buy Quantity is zero or there are no more legs to fill.

SET ASK SELL QUANTITY

act Set Ask Sell Quantity /

Get Buy and Sell Ratio Get Available Quantity Get Available Quantity
for Buy for Sell

HasLeg and Leg has
Available Quantity

Set Available Quantity
for Buy and Sell based
on Leg's Available
Quantity Limit

[Set sell and buy values based on requested amount)

l compared to available
sell value > 0 && (sell value < Min Sell
Quantity or buy value < Min Buy Quanity
or ('Allow Fill and Quantity Transacted
not equal Quantity Available) or buy
value <=0
Set buy and sell values

to 0

Do Lock

Increment Lock Quantity

requested amount < 0
Mark Ask for Order
Processing

The first step is to get the Buy/Sell Ratio, which is either on the Ask or the Ask Leg. Then the available quantity
buy/sell is set, if the Ask is a buy the buy available quantity comes from the set value and the sell is calculated from
that, and the opposite if the Ask is a Sell. Then if the Ask has a Leg and Available Quantity on the Leg the available
guantities are adjusted accordingly.

After the available quantities are set the target value is compared to the available sell quantity and the lesser of
the two is applied as the value to get set. The buy value is then calculated from the sell value using the buy/sell
ratio. Then the engine checks the sell value against the Min Sell Quantity and buy value against Min Buy Quantity
and checks if the Ask is not a Partial Fill and the buy or sell quantity is equal to the available quantity and buy value
is greater or equal to zero. If all those conditions are met the values are left alone otherwise they are set to zero.

If the set request is set to lock the lock quantity of the Ask is incremented by the transacted quantity. If the request
has a leg then that leg’s lock quantity is incremented as well.

If the requested quantity is < 0 then an event is raised to mark the Ask for additional processing. The engine will
eventually execute this ask again, in case while it had a locked amount an Ask was executed that matches this Ask.

REBALANCE ORDER LEGS FOR BUY

act Rebalance Order Legs for Buy/

Get Order Legs for Leg
Level +1

While Order Legs
grouped by leg level
exist

Rebalance Order Legs)
:Cl B
O?deearrLergost()ss;g For Each Order Leg in Order
the quanities to Legsordered by Asks Buy
Ratio then by Ask Date
zero and unlocks
the ask) I'h
Fill Proposed Order Leg A
Set Ask Buy Quantity Set Proposed Sell
oo Quantity equal to Ask
Buy Quantity
Requested Sell
Subtract Proposed Selll Quantity <= 0
Quantity from Requested
Sell Quantit:
o)
Set Next Sell Quantity = Get Order Legs for next
Proposed Buy Quantity Leg Level
A J

The rebalance starts by fetching the Proposed Order Legs for the previous level and then entering a loop that will

iterate over all previous Proposed Order Legs grouped by leg level.

Inside that loop it will clear the Proposed Order Legs, this will set all quanti
Proposed Order ordered by the Ask’s Buy Ratio. It will attempt to se
Sell Quantity equal to the Buy Quantity calculated. The Proposed Sell

Legs are processed.

The next requested sell quantity is then set to the sum of the Proposed Order Leg’s buy quantities and the next leg

level’s Proposed Order Legs are fetched and the loop continues.

ties on the proposed order equal to zero
and release any locks on the order legs’ asks’. The engine will then iterate over the Proposed Order Legs in the
t the Ask’s Buy Quantity equal to the
requested Sell Quantity of the previous Leg Level’s buy quantity and then set the Proposed Order Leg for that Ask’s
Quantity is then subtracted from the
requested Sell Quantity and if the Requested Sell Quantity is less than or equal to zero no more Proposed Order

BuiLD PROPOSED ORDER FOR SELL

act Build Proposed Order for Sell /

For Each Proposed Order Legs
grouped by Leg Level Order By Leg
Level (Sell first)

4 Fill Proposed Order)

Requested Sell Quantity > Proposed Sell Quantity

Fill Proposed Order Legs
for Sell

Rebalance Proposed
Order Legs for Sell

oo

Has Previous Leg Level Proposed Order Legs

Clear Proposed Order
Legs (sets the quanities
to zero and unlocks the
ask)

Set Requested Sell Quantity to
Proposed Buy Quantity

:Rebalance
Proposed Order
Legs for Sell I+I

For a sell ask the Sell Quantity must be applied to commodity tree first since the final Buy Ratio is market driven
and therefore the Buy Quantity is derived from the Order itself. The engine groups the Proposed Order Legs by Leg
Level and orders them ascending. Please refer to “Build Proposed Order for Buy” for a description of Leg Level. The
Requested Sell Quantity for the first iteration is the order quantity of the order.

The first step is to “Fill Proposed Order Legs for Sell”, this will attempt to fill, based on each Proposed Order Leg’s
Ask’s Available Quantity, the order from a sell perspective. If Requested Sell Quantity is greater than the sum of
Proposed Sell Quantities of the Filled Proposed Order Legs then the order must be rebalanced, unless it’s the first
iteration and then it’s not necessary. The “Rebalance Order Legs for Buy” method iterates over all previously built
Order Leg groups and adjusts their quantities downward to the reflect the shortfall in the current iteration. The
current iteration’s Proposed Order Legs are cleared and recalculated from the sum of the previous order leg’s buy

quantity.

The Requested Sell Quantity variable is then set to the Proposed Buy Quantity of the current iteration and the next

group of legs is processed.

FiLL PROPOSED ORDER LEGS FOR SELL

act Fill Proposed Order Legs for Sell /

Ask Date

For Each Proposed Order Leg
ordered by AsKs Buy Ratio then by

/ Fill Proposed Order Leg
:Set Ask Buy :Set Proposed Subtract Proposed Sell
Quantity Sell Quantity Quantity from Total Sell
equal to Ask Buy Quantity for Order
Total Sell Quantity <=0
o

REBALANCE PROPOSED ORDER LEGS FOR SELL

Get Order Legs for Leg
Level -1

act Rebalance Proposed Order Legs for Sell /

While Order Legs
grouped by leg level
exist

:Clear Proposed
Order Legs (sets
the quanities to
zero and unlocks

the ask) I'I'I

Rebalance Order Legs

For Each Order Leg in Order
Legsordered by Asks Buy
Ratio then by Ask Date

Fill Proposed Order Leg

:Set Ask _SeII :Set Proposed
Quantity Order Leg Buy
Quantity = Sell
Quantity
(calculates
Proposed Sell
Quantity from Ask
Ratios) I'I'I

Requested Sell Quantity <=0
Subtract Proposed Buy
Quantity from Requested
Sell Quantity

Set Next Buy Quantity = Get Order Legs for Leg .‘"
Proposed Sell Quantity Level -1

BuiLD ORDER

act Build Order /

For Each Proposed Order in Orders where Is Valid Order and (Is Market Quote or Proposed Order's Buy
Ratio >= AsK's Buy Ratio) order by desc (Proposed Order Buy Ratio - AsKs Buy Ratio)/(Proposed Order Buy
atio)

Rebuilds the order with al
lock in place on the

Ask's
: _ - Build a Order)
:Clear Proposed -
Order Legs_ (sets :Build Proposed
the quanities to Order
zero and unlocks .
the ask) |-|-| New Order Is Valid and
|+| Buy Ratio within range
Create Order and Add i - Build Order Legs
s o Ao ~a——
order quantity >= Lock Execute Quantity
) O
AN J

C Apply Commission to Orders)%

For Each Proposed Order that is valid and has a Buy Ratio greater or equal to the executing Ask’s Buy Ratio for that
commodity buy/sell pair ordered descending by the difference in buy ratio from the Ask’s Buy ratio for that
commodity buy sell pair an Order is built from that Proposed Order.

The first step of Build an Order is to Clear the Proposed Order Legs and then build a new Proposed Order, this time
locking the underlying Asks. The engine then checks to ensure the new Proposed Order is Valid and the Buy Ratio is
within range and then Build Order Legs, adjust the Order Quantity (the buy or sell amount of the order) and then
Create the Order and Add Legs to that Order. If Order Quantity is greater or equal to Lock Execute Quantity of the
Ask no more Orders will be created.

The last step is to apply the commission to the Orders.

BuiLD ORDER LEGS

act Build Order Legs /

k

:Clear Proposed
Order Legs (sets
the quanities to

zero and unlocks

the ask) I'I'I

Proposed Quantity + order quantity <= Asks Lock Execute Quantity (

For Quantity equals Loc
Execute Quantity - order|
quantity

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks
the ask)

:Build Proposed
Order

h

Process Order Legs O_OD

. o :Process Order
New Order Is Valid and Buy Ratio within Range Legs

|+| has broken leg

:Build Proposed

Order

h

New Order Is Valid and Buy Ratio within Range -Pro

-

has broken leg

:Clear Proposed
Order Legs (sets
the quanities to
zero and unlocks

the ask) |+|

cess Order

Legs
th

Sum Order Legs and add

to order quantity

PROCESS ORDER LEGS

act Process Order Legs /

For Each Proposed Order Leg

Order Leg's Proposed Sell and
Buy Quantitys are greater than O
and (Leg islocked or (Proposed
Quantity + Quantity Already in
Orders for Ask <= AsKs Available

Process Order Leg

Add Proposed Quantity to
Ask Dictionary for all
Orders (ensures for

quotes that an Ask isn't

Apply Commision

' Quantity)
(Set has broken leg equal tru;

overstated between
orders)

