
A GENERALIZED COMMODITY BARTER EXCHANGE

ENGINE

ABSTRACT
This document describes a prototype barter exchange system where users buy and sell commodities without using

an exchange medium. This system includes mechanisms for finding best available price and multi-tiered

transactions.

DATA MODEL

AskLegs

AskLegID bigint

AskID bigint

BuyCommodityID int

SellCommodityID int

BuyRatio bigint

SellRatio bigint

MinBuyQuantity bigint

MinSellQuantity bigint

ApplyCommissionToBuy bit

AvailableBuyQuantity bigint

AvailableSellQuantity bigint

StartingBuyQuantity bigint

StartingSellQuantity bigint

Column Name Data Type Allow Nulls

Asks

AskID bigint

UserID uniqueidentifier

CommoditySellID int

CommodityBuyID int

SellRatio bigint

BuyRatio bigint

BuyQuantity bigint

SellQuantity bigint

AllowPartialFill bit

ApplyCommissionToBuy bit

AskDate datetime

ValidToDate datetime

MinBuyQuantity bigint

MinSellQuantity bigint

StartBuyQuantity bigint

StartSellQuantity bigint

MaxLegDepth int

Column Name Data Type Allow Nulls

Commodities

CommodityID int

CommodityName varchar(100)

Symbol varchar(5)

Column Name Data Type Allow Nulls

OrderLeg

OrderLegID uniqueidentifier

OrderID uniqueidentifier

BuyerUserID uniqueidentifier

CommoditySellID int

CommodityBuyID int

SellQuantity bigint

BuyQuantity bigint

CommissionCommdoit... int

Commission bigint

AskID bigint

Column Name Data Type Allow Nulls

Orders

OrderID uniqueidentifier

UserID uniqueidentifier

OrderDate datetime

CommodityBuyID int

CommoditySellID int

CommissionCommodity... int

Commission bigint

AskID bigint

Column Name Data Type Allow Nulls

Users

UserID

UserName

Email

ASK STRUCTURE
An Ask is a user request for an Order of commodities. Asks must contain either a Buy or a Sell Commodity, if they

contain both a Buy Ratio and Sell Ratio must be specified. If either the Buy or Sell commodity is not set

corresponding Ask Legs must be set. A Sell Quantity or Buy Quantity must also be specified, if sell commodity is not

set a Sell Quantity cannot be specified and the same for buy quantity and buy commodity. Sell Quantity and Buy

Quantity will be adjusted for partial fill Asks as they’re processed. All quantities are integers as the barter units

cannot be fractional.

Asks can be a partial fill or not, asks that are not a partial fill will not be processed if the full quantity is not

available on the market place at the requested buy ratio.

Min Buy Quantity can be populated if there is a Buy Commodity and Min Sell Commodity can be populated if there

is a Sell Commodity. It is a good idea to populate these with partial fill asks corresponding to the commission as the

commission applied to a small quantity will be vastly overstated.

Max Leg Depth defines how many commodity tiers will be attempted when finding potential orders with the best

buy ratio. A higher max leg depth may result in more options and a better price but it takes longer to process. The

Ask can also specify that the commission is applied to the buy commodity, if this is the case the commission will be

subtracted from the order; if the commission is applied to the sell commodity the seller must provide additional

commodities. It is generally a good idea for positive buy ratios to include the commission in the buy because the

commission percentage is rounded up and the greater the quantity the closer to the commission is to the ideal

rate.

Start Buy Quantity or Start Sell Quantity will be populated if the corresponding Sell or Buy Quantity is populated,

this is for accounting and reconciliation purposes. Ask Date will also be automatically populated at the time of

Order request.

ASK LEG STRUCTURE
Asks’ can have ask legs, this allows an order request where the user is buying a commodity but willing to sell

multiple commodities or selling a commodity and willing to buy multiple commodities. The Ask Leg’s Buy or Sell

Commodity must be set, and the corresponding Ask’s Buy or Sell commodity must be not set. The Buy Ratio and

Sell Ratio must be set, the ratio is in terms of that leg to the parent ask.

Optionally Available Quantity Buy or Available Quantity Sell (depending on if it’s a buy or sell ask) can be set to

inform the engine the max quantity that can be transacted, these are updated as orders are processed. If they are

set the corresponding Starting Quantity will be set for accounting purposes.

Like the parent ask, Apply Commission to Buy can be set.

ORDER STRUCTURE
An order is a transaction for a user buying a commodity and selling another. The Order is tied back to an Ask for

accounting purposes. It contains a reference to the Commodity being bought, sold and commissioned and the

commission for the order.

ORDER LEG STRUCTURE
Order Legs are the actual transactions comprising an order, an order must have at least one leg and must have at

least one leg with the buy commodity of the order and the sell commodity of the order. Order legs define the

commodity being sold and bought, the sell quantity and buy quantity, the commission commodity that the seller is

paying and the commission quantity and a reference to the seller.

EXAMPLE
Assume all are partial fill.

EXISTING ASKS

Buy Commodity Sell Commodity Buy Ratio Sell Ratio Buy Quantity Buy Ratio

Gold Silver 20 1295 1000 0.015

Gold Silver 15 1295 1000 0.012

Silver Platinum 1466 20 1000000 73.3

Platinum Copper 3 1466 100000 0.002

ASK TO EXECUTE

Buy Commodity Sell Commodity Buy Ratio Sell Ratio Buy Quantity

Copper Gold 1294 3 1000000

EXECUTED ORDER LEGS

Buy Commodity Sell Commodity Buy Quantity Sell Quantity Sell Ratio

Silver Gold 86333 1000 0.012

Silver Gold 63713 984 0.015

Platinum Silver 2047 150046 73.3

Copper Platinum 1000000 2047 0.002

The Ask was successfully executed with 1984 gold sold for 1000000 copper. With a buy ratio of 504 versus the 431

in the quote, this is because there is a favorable ask in there for Gold for Silver that was prioritized by the engine.

ALGORITHM

act Execute Ask

Set Lock Execute

Quantity (prev ents other

Ask requests from using

this ask)

For each Sell

Commodity

Build Order Legs for Sell Commodity targeting Buy Commodities

Build Proposed Order

Get Asks where Buy

Commodity is this Sell

Commodity

Get Asks where (leg

lev el < max leg depth ||

sell commodity is in buy

commodity) and current

commodity tree doesn't

contain a sell entry for

this commodity

For Each Group of Asks by

Sell Commodity

Add Asks in Group to

Proposed OrderIncrement Leg Lev el

Build Proposed Order

For Each Proposed

Order Leg

Collection in Bag

Buy Quantity Set

on Ask
Build Proposed Order For

Buy

Build Proposed Order for

Sell

Remov e any Proposed

Order Legs with Zero

Buy or Sell Quantity

Not Market Order and

Allow Partial Fil l and

Proposed Order is

ValidRemov e Worst Proposed

Order Leg

(More than one Buy Commodity or the Sell

Commodity is not in the Buy Commdoities) and

leg level < max leg Depth

Clone Proposed Order

Commodity Sell ID of

Ask is in target Buy

Commodities

Build Proposed Order

Legs for Asks in the

Proposed Order and add

the to the Bag

Build Order

HIGH LEVEL
The first step in the algorithm of executing an ask or getting a quote is setting the asks Lock Execute Quantity equal

to the available quantity of the Ask. Available Quantity is defined as the Ask’s Buy or Sell Quantity minus Lock

Quantity (the amount currently being used by other potential orders) minus Lock Execute Quantity.

Then the engine attempts to find commodity trees which will represent Proposed Orders. For each Commodity

that can be sold by the Ask it will enter a recursive function that builds a tree of commodity buy/sell combinations

that result in a sale of the commodity id and a buy of one of the commodities that can be bought. This is described

in the diagram above under “Build Order Legs for Sell Commodity targeting Buy Commodities”.

Then for each commodity tree it will attempt to build a Proposed Order. Depending on whether the ask being

executed or quotes has a buy or sell quantity it will enter different logic to build the initial Proposed Order.

For non-market orders that allow partial fill and are valid the engine will attempt to remove Proposed Order Legs

until the Proposed Order’s Buy Ratio (Proposed Quantity Buy / Proposed Quantity Sell) is greater or equal to the

Ask’s Real Buy Ratio (Buy Ratio / Sell Ratio). Valid Orders are defined as those where the Order Quantities are in

sync (the corresponding buy and sell order leg quantities for the same commodity are equal), there contains at

least one order leg that has a Sell Commodity in the Ask’s Sell Commodities, there contains at least one order leg

that has a Buy Commodity in the Ask’s Buy Commodities and Proposed Quantity Buy and Sell are greater than zero.

After the proposed orders are built the final order will be built from the best (by Buy Ratio) Proposed Orders. This

will be detailed later.

If it is an execute the locks will be realized and the available quantities on the Ask and Ask Legs adjusted according

to the order.

BUILD PROPOSED ORDER FOR BUY

For a buy ask the Buy Quantity must be applied to the commodity tree first since the final Buy Ratio is market

driven and therefore the Sell Quantity is derived from the order itself. The engine groups the Proposed Order Legs

by Leg Level and orders them descending; leg level is an indicator of where in the tree the Proposed Order Leg is

with 1 being a sell and the max number being the buy. The Requested Buy Quantity for the first iteration is the

order quantity of the order.

The First step is to “Fill Proposed Order Legs for Buy”, this will attempt to fill, based on each Proposed Order Leg’s

Ask’s Available Quantity, the order from a buy perspective. If Requested Buy Quantity is greater than the sum of

Proposed Buy Quantities of the Filled Proposed Order Legs then the order must be rebalanced, unless it’s the first

iteration and then it is not necessary. The “Rebalance Order Legs for Buy” method iterates over all previously built

Order Leg groups and adjusts their quantities downward to reflect the short fall in the current iteration. The

current iteration’s Proposed Order Legs are cleared and recalculated from the new sum of the previous order leg’s

sell quantity.

The Requested Buy Quantity variable is then set to the Proposed Sell Quantity of the current iteration and the next

group of legs is processed.

act Build Proposed Order For Buy

Fill Proposed Order

Fill Proposed Order Legs

For Buy
Requested Buy Quantity > Proposed Buy Quantity

Rebalance Order Legs

for Buy

Has Previous Leg Level Proposed Order Legs

Clear Proposed Order

Legs (sets the quanities

to zero and unlocks the

ask)

:Fill Proposed

Order Legs For

Buy

For Each Proposed Order Legs grouped by Leg

Level Order By Leg Level desc (Buy first)

Set Requested Buy

Quantity to Proposed Sell

Quantity

FILL PROPOSED ORDER LEGS FOR BUY

The Total Buy Quantity starts out at the target buy quantity for the Order Leg from the previous iteration or initial

Ask Quantity. The engine orders the Proposed Order Legs by the Order Leg’s Ask’s Buy Ratio (lower being more

favorable to the requester of the quote) and then by Ask Date and iterates over them. It attempts to set the Ask’s

Sell Quantity equal to the Buy Quantity of the Order Leg, the Ask is in reverse because it is the other side of the

order leg being executed. The Proposed Order Leg’s Proposed Buy Quantity is then set to the quantity calculated in

the “Set Ask Sell Quantity”. The Proposed Buy Quantity is then subtracted from the requested buy quantity and

processing continues until the Requested Buy Quantity is zero or there are no more legs to fill.

act Fill Proposed Order Legs For Buy

For Each Proposed Order Leg

ordered by Ask's Buy Ratio then by

Ask Date

Fill Proposed Order Leg

Total Buy Quantity <= 0

Subtract Proposed Buy

Quantity from requested

buy quantity

:Set Ask Sell

Quantity

:Set Proposed

Order Leg Buy

Quantity = Sell

Quantity

(calculates

Proposed Sell

Quantity from Ask

Ratios)

SET ASK SELL QUANTITY

The first step is to get the Buy/Sell Ratio, which is either on the Ask or the Ask Leg. Then the available quantity

buy/sell is set, if the Ask is a buy the buy available quantity comes from the set value and the sell is calculated from

that, and the opposite if the Ask is a Sell. Then if the Ask has a Leg and Available Quantity on the Leg the available

quantities are adjusted accordingly.

After the available quantities are set the target value is compared to the available sell quantity and the lesser of

the two is applied as the value to get set. The buy value is then calculated from the sell value using the buy/sell

ratio. Then the engine checks the sell value against the Min Sell Quantity and buy value against Min Buy Quantity

and checks if the Ask is not a Partial Fill and the buy or sell quantity is equal to the available quantity and buy value

is greater or equal to zero. If all those conditions are met the values are left alone otherwise they are set to zero.

If the set request is set to lock the lock quantity of the Ask is incremented by the transacted quantity. If the request

has a leg then that leg’s lock quantity is incremented as well.

If the requested quantity is < 0 then an event is raised to mark the Ask for additional processing. The engine will

eventually execute this ask again, in case while it had a locked amount an Ask was executed that matches this Ask.

act Set Ask Sell Quantity

Get Buy and Sell Ratio
Get Av ailable Quantity

for Buy

Get Av ailable Quantity

for Sell

Has Leg and Leg has

Available Quantity

Set Av ailable Quantity

for Buy and Sell based

on Leg's Av ailable

Quantity Limit

Set sell and buy v alues based on requested amount

compared to av ailable

sell value > 0 && (sell value < Min Sell

Quantity or buy value < Min Buy Quanity

or (!Allow Fill and Quantity Transacted

not equal Quantity Available) or buy

value <= 0

Set buy and sell v alues

to 0

Do Lock

Increment Lock Quantity

requested amount < 0

Mark Ask for Order

Processing

REBALANCE ORDER LEGS FOR BUY

The rebalance starts by fetching the Proposed Order Legs for the previous level and then entering a loop that will

iterate over all previous Proposed Order Legs grouped by leg level.

Inside that loop it will clear the Proposed Order Legs, this will set all quantities on the proposed order equal to zero

and release any locks on the order legs’ asks’. The engine will then iterate over the Proposed Order Legs in the

Proposed Order ordered by the Ask’s Buy Ratio. It will attempt to set the Ask’s Buy Quantity equal to the

requested Sell Quantity of the previous Leg Level’s buy quantity and then set the Proposed Order Leg for that Ask’s

Sell Quantity equal to the Buy Quantity calculated. The Proposed Sell Quantity is then subtracted from the

requested Sell Quantity and if the Requested Sell Quantity is less than or equal to zero no more Proposed Order

Legs are processed.

The next requested sell quantity is then set to the sum of the Proposed Order Leg’s buy quantities and the next leg

level’s Proposed Order Legs are fetched and the loop continues.

act Rebalance Order Legs for Buy

Get Order Legs for Leg

Lev el + 1

Rebalance Order Legs

While Order Legs

grouped by leg level

exist

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

For Each Order Leg in Order

Legs ordered by Ask's Buy

Ratio then by Ask Date

Fill Proposed Order Leg

Set Ask Buy Quantity

Subtract Proposed Selll

Quantity from Requested

Sell Quantity

Requested Sell

Quantity <= 0

Set Proposed Sell

Quantity equal to Ask

Buy Quantity

Set Next Sell Quantity =

Proposed Buy Quantity

Get Order Legs for next

Leg Lev el

BUILD PROPOSED ORDER FOR SELL

For a sell ask the Sell Quantity must be applied to commodity tree first since the final Buy Ratio is market driven

and therefore the Buy Quantity is derived from the Order itself. The engine groups the Proposed Order Legs by Leg

Level and orders them ascending. Please refer to “Build Proposed Order for Buy” for a description of Leg Level. The

Requested Sell Quantity for the first iteration is the order quantity of the order.

The first step is to “Fill Proposed Order Legs for Sell”, this will attempt to fill, based on each Proposed Order Leg’s

Ask’s Available Quantity, the order from a sell perspective. If Requested Sell Quantity is greater than the sum of

Proposed Sell Quantities of the Filled Proposed Order Legs then the order must be rebalanced, unless it’s the first

iteration and then it’s not necessary. The “Rebalance Order Legs for Buy” method iterates over all previously built

Order Leg groups and adjusts their quantities downward to the reflect the shortfall in the current iteration. The

current iteration’s Proposed Order Legs are cleared and recalculated from the sum of the previous order leg’s buy

quantity.

The Requested Sell Quantity variable is then set to the Proposed Buy Quantity of the current iteration and the next

group of legs is processed.

act Build Proposed Order for Sell

For Each Proposed Order Legs

grouped by Leg Level Order By Leg

Level (Sell first)

Fill Proposed Order

Has Previous Leg Level Proposed Order Legs

Clear Proposed Order

Legs (sets the quanities

to zero and unlocks the

ask)

Set Requested Sell Quantity to

Proposed Buy Quantity

Fill Proposed Order Legs

for Sell

Rebalance Proposed

Order Legs for Sell

:Rebalance

Proposed Order

Legs for Sell

Requested Sell Quantity > Proposed Sell Quantity

FILL PROPOSED ORDER LEGS FOR SELL

REBALANCE PROPOSED ORDER LEGS FOR SELL

act Fill Proposed Order Legs for Sell

For Each Proposed Order Leg

ordered by Ask's Buy Ratio then by

Ask Date

Fill Proposed Order Leg

Subtract Proposed Sell

Quantity from Total Sell

Quantity for Order

:Set Ask Buy

Quantity

:Set Proposed

Sell Quantity

equal to Ask Buy

Quantity

Total Sell Quantity <= 0

act Rebalance Proposed Order Legs for Sell

Rebalance Order Legs

While Order Legs

grouped by leg level

exist

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

For Each Order Leg in Order

Legs ordered by Ask's Buy

Ratio then by Ask Date

Fill Proposed Order Leg

Get Order Legs for Leg

Lev el - 1

:Set Ask Sell

Quantity
:Set Proposed

Order Leg Buy

Quantity = Sell

Quantity

(calculates

Proposed Sell

Quantity from Ask

Ratios)

Subtract Proposed Buy

Quantity from Requested

Sell Quantity

Requested Sell Quantity <= 0

Set Next Buy Quantity =

Proposed Sell Quantity

Get Order Legs for Leg

Lev el - 1

BUILD ORDER

For Each Proposed Order that is valid and has a Buy Ratio greater or equal to the executing Ask’s Buy Ratio for that

commodity buy/sell pair ordered descending by the difference in buy ratio from the Ask’s Buy ratio for that

commodity buy sell pair an Order is built from that Proposed Order.

The first step of Build an Order is to Clear the Proposed Order Legs and then build a new Proposed Order, this time

locking the underlying Asks. The engine then checks to ensure the new Proposed Order is Valid and the Buy Ratio is

within range and then Build Order Legs, adjust the Order Quantity (the buy or sell amount of the order) and then

Create the Order and Add Legs to that Order. If Order Quantity is greater or equal to Lock Execute Quantity of the

Ask no more Orders will be created.

The last step is to apply the commission to the Orders.

act Build Order

For Each Proposed Order in Orders where Is Valid Order and (Is Market Quote or Proposed Order's Buy

Ratio >= Ask's Buy Ratio) order by desc (Proposed Order Buy Ratio - Ask's Buy Ratio)/(Proposed Order Buy

Ratio)

Build a Order

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

:Build Proposed

Order

Rebuilds the order with a

lock in place on the

Ask's

New Order Is Valid and

Buy Ratio within range

Build Order LegsAdjust order quantity
Create Order and Add

Legs to that Order

order quantity >= Lock Execute Quantity

Apply Commission to Orders

BUILD ORDER LEGS

act Build Order Legs

Proposed Quantity + order quantity <= Ask's Lock Execute Quantity
Process Order Legs

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

:Build Proposed

Order

For Quantity equals Lock

Execute Quantity - order

quantity

New Order Is Valid and Buy Ratio within Range
:Process Order

Legs

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

has broken leg

:Clear Proposed

Order Legs (sets

the quanities to

zero and unlocks

the ask)

:Build Proposed

Order

New Order Is Valid and Buy Ratio within Range :Process Order

Legs

has broken leg

Sum Order Legs and add

to order quantity

PROCESS ORDER LEGS

act Process Order Legs

For Each Proposed Order Leg

Process Order Leg

Add Proposed Quantity to

Ask Dictionary for all

Orders (ensures for

quotes that an Ask isn't

ov erstated between

orders)

Order Leg's Proposed Sell and

Buy Quantitys are greater than 0

and (Leg is locked or (Proposed

Quantity + Quantity Already in

Orders for Ask <= Ask's Available

Quantity)
Apply Commision

Set has broken leg equal true

