MIL.STRATML..SERVICES

o MultiPlex, studio-production

Jason L. Lind, USAF (Sep.)
Codlition Lead / lind@multiplex.studio
22 September 2020

A dire and accelerating need of the DoD, and really organizations in general, is to enforce their strategy

downstream and verify upstream with reporting; StratML, an ISO (Part 1) and ANSI (Part 2) standard,
begins to solve this problem and — with some extension, aka StratMLX — an architecture could be born

to enable this next generation of C2.

StratMLX, whose proof-of-concept was implemented as StratML Part 3.5 in 2018, has several dozen
elements in a consistent, yet complex and flexible, structure — and as such expecting anyone,
particularly high level commanders, to develop the StratML by hand is a non-go thus requiring a

Graphical Modeling Tool which is then syndicated through mil.StratML.services.

Existing C2 platforms are not going away
any more than new C2 systems will be
guaranteed to be on a common
architecture, as such to achieve a vision of

unified Command and Control we must

consider a microservices based approach.
Microservices enable connecting to a vast
array of platforms and system for
enforcement and reporting thus

enhancing C2 across the DoD.

One area in particular this would be

useful is energy as there is a concrete, yet

abstract, “Flight Plan for Energy for 2017-

2036” that defines the USAF strategy for

mICI‘OSQI'VICQ S achieving several goals and objectives

relating to energy - particularly fuel

consumption. A real world use case is to

set aircraft usage — flight plans, schedules and parameter (e.g. afterburners) — at the strategic (4*/3*)
level and enforce that all the way to ground systems — programmatically — then reporting back

compliance up to the top.



MIL.STRATML.SERVICES

o MulttPler) studio-production

Jason L. Lind, USAF (Sep.)
Coadlition Lead / lind@multiplex.studio

21 September 2020
Strategy Markup Language is an ISO (Part 1) and ANSI (Part 2) standard for expressing strategic

planning in machine readable format. While there has been a steady lack of development over the past
4 years on the standard it has not been abandoned and is the only markup language that contends to

speak strategy.

StratML.services seeks to build a syndicated API for storage, consumption, transformation and
indexing of strategic plans. This is a greenfield development project that has a proof-of-concept (POC)
code base from late 2018 published on github.com/jlind0.

While the civilian POC was based around consuming and indexing IRS Form 990 (disclosures for Non-
Profits) the military one will be centered on perpetuating strategy decisions to Command-and-Control
(C2) systems; specifically helping realize a DoD objective of a 20% reduction in aircraft fuel

consumption, by 2022, via altering flight plans without any mechanical engineering improvements.
The mil.StratML.services project has several high level goals:

e Extension of StratML to part 4 which includes higher fidelity business logic and work with 3D
PDF Consortium to develop it as an ANSI standard. While this will complicate the schema by
several orders of magnitude (a part 3.5 was in the works in 2018) we contend that this lack of
fidelity was one of the primary reasons for low adoption and support of the part 1 and 2
standards.

e Graphical Strategy Architecture (SA) tooling around StratML akin to Sparx Enterprise Architect,
possibly even a plugin to existing UML toolkits.

e Syndicated services for distribution of, and analytics on, strategic plans.

e uservice and Composite Applications Catalog such that the community can develop pservices,
and applications, that leverage the mil.StratML.services platform delivering C2 functionality on

the near-endless ecosystems within the DoD.

While StratML is “markup” not “model” part 4 would be a combination of the two. We need to be able
to model and distribute strategy plans in order for C2 to be enforced and reported up and down the
chain of command. The initial use case will be exemplary of the power of this platform and should lead

to rapid expansion of C2 functionality throughout not only DoD but Allied militaries as well.



POST i | C#
PATCH |
PUT I =
Index —
Gremlin
mil.StratML.services CosmosDB Worlker

Bind StratML to
produce microservice
definitions and stubs

metaservice

.,
Define bounds ﬁ'b
ﬁ’& StratML Artificial Intelligence (Cortana, Alexa, Watson , etc.)

Microservices

The core of StratML.services is a No-SQL, in the implementation above via Azure CosmosDB, datastore that enables deep insights on
StratML documents — both within, and more importantly across. The SQL-API of CosmosDB enables storing StratML documents in
JSON — which can then be transformed via a worker process into Graph-API yielding deep-indexing. mil.StratML.services provides

CRUQ (Create-Read-Update-Question) support to any number of 24 and 3¢ party services and applications.

The primary architecture implementation consideration is microservices, however for these to be useful they must react to changes in the
plans without necessarily requiring a rewrite, and when the interface does change the stakeholders must be notified. A metaservice is

written in the new M! (M-Bang) language and binds schema changes in StratML.services to a syndicated microservices catalog.



