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Abstract

We present a unified theoretical framework that integrates multi-level
cognitive dynamics, a cyber—space—time—thought continuum, cognitive
bias effects, and ideal organizational principles using a rigorous geometric
formulation. Building on prior work, this Revision 2 develops a differential
model of cyber-space-time-thought fields and their interactions, derives a
Jacobian representation across hierarchical functional levels, and incorpo-
rates the Dunning—Kruger effect via a bundle-based adjustment of system
parameters. We formalize the emergence of cyber fields as integrals across
space, time, and thought dimensions and introduce a covariant derivative
(connection) to ensure consistency when integrating across multiple di-
mensions. The resulting model suggests that finite-level systems achieve
optimal intelligence through an oligopical (small-group competitive) in-
ternal structure, while maintaining free, unstructured interaction with
an unbounded environment, in alignment with ideal organization theory.
The paper provides a formally structured synthesis of these ideas, with
equations, cross-references, and a unified notation bridging physical, in-
formational, and cognitive domains.

1 Introduction

Understanding the interwoven nature of physical, digital, and cognitive realities
requires a framework that spans multiple domains of influence. In this work, we
develop a comprehensive model termed the Cyber—Space—Time—Thought Con-
tinwum, which unifies several previously disparate components: (i) a multi-level
influence—perception dynamic captured by a Jacobian matrix across func-
tional levels; (ii) a set of coupled differential equations governing evolu-
tion over cyber, spatial, temporal, and thought dimensions; (iii) a treatment of
cognitive bias (the Dunning—Kruger effect) within the system’s geometry;
(iv) principles from an Ideal Organizational Theory distinguishing finite
vs. non-finite systems and advocating an oligopical internal structure; and (v)
a fiber-bundle formalism with a covariant derivative to bind these elements
into a coherent geometric structure.
In Revision 1 of this theory, a narrative description of the Cyber—Space—Time—Thought

continuum was given, along with initial differential equations coupling these di-
mensions. In this Revision 2, we extend that foundation by incorporating a



formal multi-level model of cognition and bias, and by enforcing consistency
through a covariant geometric approach. The aim is a rigorous, self-consistent
theory that can describe how digital/cyber factors (e.g. information systems),
physical space-time processes, and human thought all co-evolve and influence
each other.

The remainder of this paper is organized as follows. In Section 2, we formu-
late the core dynamic field equations for the cyber—space—time—thought contin-
uum, defining the key state variables and interactions. Section 3 develops the
Jacobian linearization of these dynamics and introduces a hierarchy of five func-
tional levels with varying coupling strengths, capturing influence—perception
feedback across organizational levels. In Section 4, we incorporate the Dun-
ning—Kruger bias by geometrically adjusting the Jacobian entries based on the
discrepancy between perceived and actual performance at each level. Section 5
recasts the framework in a fiber bundle context: we define how integrated “cy-
ber field” quantities emerge by integrating fundamental fields over one or more
dimensions (space, time, thought), and we introduce a covariant derivative to
maintain consistency when combining these integrals. Section 6 discusses the
organizational implications of the model, relating the mathematics to the idea
of finite (oligopical) internal structure versus free interaction with the external
environment. Finally, Section 7 concludes with a summary and outlook.

2 Dynamic Equations of the Cyber—Space—Time—Thought
Continuum

At the heart of our theory is a set of differential equations that describe how
the state of the system evolves through interactions among four fundamental
dimensions: cyber (C'), space (X), time (t), and thought (©). We consider three
primary state variables that emerge from these dimensions:

e S = S(t,x): a structured reality state, associated primarily with
the spatial dimension (and possibly representing an organized or physi-
cal state, such as economic or structural power distributed in space x),

e [ = I(t,x): an influence or cognitive state, associated with the
thought dimension (e.g. the perceived influence or information at loca-
tion x and time t),

e T = T(t,x): a transformation state, associated with the temporal
dimension (capturing evolutionary progress or change, sometimes likened
to an innovation or transformation factor).

In addition, the cyber dimension enters the model through functions that
modulate the interactions above. We introduce an exogenous function C(x) to
represent the level of cyber connectivity or augmentation at a given location (for
instance, the presence of digital infrastructure or Al assistance). This C' will
appear as a parameter in coupling terms below.



The evolution equations are formulated as a system of partial differential
equations (PDEs) in time (and space, for distributed systems). Specifically, we
propose:

%:aP(S,t) + B3(L,1) + V-(DVS), (1)
OV (o(5, OV VD) + 41 (S 1), (2)
%—f:h(T,S)—i—dT(l—%) ~ (T. (3)

These three equations govern the coupled dynamics of S, I, and T. They can
be interpreted as follows:

e Structured state S (Eq. ??): The rate of change of S is influenced
by two types of inputs: a function P(S,t) representing the probabilistic or
stochastic influence on S, and a function (I, t) representing the structured
influence on S that depends on the thought-related state I. The coeffi-
cients « and 8 weight these two contributions, respectively. For example,
in a socio-economic context, P(S,t) might denote random fluctuations or
probabilistic events affecting the state (hence “Reality as Probability”),
while 3(1,t) could represent deliberate, structured interventions (e.g. poli-
cies or plans informed by cognitive processes I). In addition, a diffusion
term D V2S (with D a diffusion coefficient) allows S to spread or equalize
over space x; V - (DVS) captures the spatial flow or dispersion of the
structured state. Overall, Eq. (?77) says that S grows or decays due to
probabilistic effects, structured/cognitive influences, and spatial diffusion.

¢ Influence state I (Eq. 7?7): The evolution of the influence or thought-
centric state I is given by two terms. The first term V - (g(S,C)VI) is
a diffusion-like term modulated by a factor ¢(S,C). Here g is a function
that depends on the current structured state S and the cyber connectiv-
ity C. This term means that the gradient of I (differences in influence or
information across space) causes a flow of influence, and the conductivity
of that flow is not constant but rather enhanced or dampened by g(S, C).
In physical terms, if S is high (strong structural foundation) or if cyber
connectivity C'is high (strong digital networks), influence can spread more
effectively (a large g). Conversely, if structure S is weak or there is little
cyber infrastructure, the spread of influence I may be limited. The second
term v I (S — 1) is a logistic growth term for I. This term encapsulates a
cognitive feedback: if the structured state S exceeds the current influence
I, the positive gap (S — I) drives an increase in I (amplifying influence
or perceived capability, scaled by factor ); however, as I approaches S,
this growth slows, and if I were to overshoot S, the term would become
negative (making I self-correct downward). This logistic term thus models
a tendency for I to gravitate toward S but with a self-limiting effect to
prevent runaway growth. Notably, it implies that the perceived influence



I is bounded by the structured reality S in the long run. There is no sepa-
rate constant decay term for I in Eq. (??)7, since the logistic formulation
already ensures I will decrease if it exceeds S (acting as an effective decay
when I is too large).

e Transformation state T (Eq. ??): The variable T represents an evolv-
ing transformative state, which might be thought of as a measure of
progress or cumulative change (it explicitly involves the time dimension
in its definition). Its dynamics are given by a combination of a general
function h(T,S) and a logistic-growth-like term §T(1 — T/S), minus a
linear decay ¢T. The function h(T,S) can be understood as an external
or higher-order driving function that governs how transformations build
up based on the current transformation 7" and the state S; for example,
h could represent technological innovation rate which might increase if
S (the available structured resources) is higher. The term 6 7'(1 — T'/S)
resembles logistic growth: it causes 7" to grow when it is small relative
to S (when T/S = 0, this term is §7') but imposes a limit as 7" nears
S (when T approaches S, 1 — T'/S tends to 0, slowing further growth).
This models the idea that transformation or progress is bounded by the
scope of the current reality S — for instance, you cannot transform more
than what the underlying state can support. The —(T term represents a
baseline exponential decay or dissipation of T' (with ¢ > 0): in absence of
continual driving, transformative progress will fade over time. (This linear
decay term ensures stability and was introduced in Rev 2 to account for
natural regression or loss of transformation if not sustained.)

Notes: (i) In Eq. (?7?), we have denoted the structured influence function as
X (I,t) instead of S(I,t) to avoid confusion between the function name and the
state S. In the prior literature, the same letter S was used for a function of
(I,t); here we use ¥ to clearly distinguish it. Similarly, P(S,t) is a function
of S (and possibly time) representing probabilistic effects on S. Both P and ¥
can be thought of as known or exogenous functions that shape the system based
on state and time. (ii) The spatial differential operators V(-) in Egs. (??)-(?7?)
imply that S and I may be fields over space x. In many cases, one could simplify
to a spatially-uniform model (treating V.S = 0, VI = 0) if focusing on global
dynamics or if spatial variation is not of interest; we retain the general form
here for completeness. (iii) The form of these equations integrates elements of
the Reality as Probability perspective (through P), the role of Cyber influence
(C inside g), and a cognitive feedback loop (S — I logistic terms), thus merging
distinct theoretical components into one system.



3 Linearization and Multi-Level Jacobian Dy-
namics

The nonlinear system described by Eqs. (??)—(??) can be analyzed by examining
its Jacobian matrix, which represents the local linearized dynamics of small
perturbations in (S,I,T). The Jacobian J is the 3 x 3 matrix of first partial
derivatives of the right-hand side of the system. In general, we define the entries
of J as: )
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where we use dot notation S = 05/0¢t, etc., for brevity. Each entry (e.g.
A = 0S5/8S, B = 3S/8I, etc.) can be interpreted as the instantaneous in-
fluence that one variable exerts on the rate-of-change of another, in a local lin-
ear approximation. Although the exact analytical expressions for these partial
derivatives can be written by differentiating Eqgs. (?7)—(?7), it is more illumi-
nating to discuss them qualitatively in terms of their physical meaning:

e A= g—g represents how sensitive the growth of S is to S itself. From
Eq. (?7?), this includes contributions « 9P/9S (how changes in S alter the
probabilistic influence on itself) and possibly §9%/9S (if ¥ had any in-
direct dependence on S). We also have a contribution from the diffusion
term: formally 9(V - DVS)/dS = D V? (the Laplacian operator acting
on an infinitesimal perturbation of S). In simpler terms, A aggregates
the feedback of S on its own growth: for example, if increasing S raises
the probabilistic production P(S,t), then 9P/dS > 0 and A gets a posi-
tive contribution, indicating a self-reinforcing effect. A also contains the
effect of any homogeneous diffusion (which in a spatially uniform pertur-
bation would contribute zero, but in spatial modes can contribute negative
damping proportional to wavenumber squared).

e B = % measures how changes in the thought/influence state I affect

the evolution of S. A non-zero B arises from the term SX(I,t) in S:
d8/dI = ‘g—? If 3(1,t) is an increasing function of I (which we ex-
pect, since a higher influence or cognitive drive I should be able to bol-
ster the structured state S more strongly), then B > 0. Thus, B cap-
tures a cross-domain influence: cognitive influence feeding into physi-
cal/structured growth. In our interpretation, B “captures how both prob-
abilistic and structured factors impact the thought-related dynamics” —
phrased differently, it reflects that the presence of cognitive influence I
can amplify the structured development of S. (This phrasing comes from



recognizing that an increase in I might come from improved foresight or
plan which then improves S via the 3 term.)

C = % is the sensitivity of S’s evolution to the transformation state T.
From Eq. (??), T does not explicitly appear, except possibly indirectly
through P(S,t) or external time-dependence. If P has an explicit time
dependence or if ¥ indirectly depends on 7' (which in our current formu-
lation it does not), C could be non-zero. Generally, we might expect C
to be small or zero unless there is a direct coupling of T back into S (e.g.
if transformations can directly alter the structured state, which could be
a higher-order effect). In many cases we can assume C' =2 0 for simplicity,
or consider it as a measure of how fast-changing transformation processes
feed back into S.

D = % represents how the evolution of I responds to changes in S.
Looking at Eq. (?7?), S enters in two places: inside g(S, C) and inside the
logistic factor I(S — I). The partial derivative 1 /dS has a term from g:
V - ((8g/0S)VI), which basically means that if S increases, the diffusion
of I might become more effective (if dg/0S > 0 due to S enabling spread
of influence). Additionally, differentiating vI(S — I) with respect to S
yields 4TI (since 9(S — I)/0S = 1). Thus, D ~ I+ (spatial coupling
term). At a steady operating point, I might be some fraction of S, so
~vI is a positive term indicating that a larger structured state S drives
an increase in I's growth rate. In summary, D encodes the notion that
structure feeds thought: higher S tends to raise I (both by providing more
headroom in the logistic term, and by potentially allowing influence to
propagate more via g).

E = % is the self-influence of I on its own growth. From Eq. (77?),
differentiating vI(S — I) w.r.t I yields (S — 2I). Evaluated near an
equilibrium where I might be on the order of S, this can be negative
(if I > S/2) which indicates saturation. In particular, if I approaches S,
oI /OI = —~I (negative, representing self-limiting growth). There is also a
possible contribution from the diffusion term: 9V - (¢(S, C)VI)/0I which
can introduce a damping (through V- (gV) acting on a perturbation of I).
We may also include any intrinsic “forgetting” or decay of influence here as
a negative component (in the Jacobian from our logistic term, this appears
as the —2+I part when [ is large). For clarity, we can say E captures the
self-requlation of the cognitive/influence state: it will be E < 0 if increases
in I tend to slow further growth of I (which is typically the case due to
saturation or limited attention, etc.). Additionally, if there were an explicit
decay parameter for I, it would contribute a constant negative part to E.
We see E as encompassing the “self-decay of perceived influence, plus
how space—thought discrepancies and cyber diffusion shape thought” —
meaning F is negative due to both natural decay and the fact that when
I overshoots S (a space-thought gap in the other direction), I diminishes.



o ['= % is the effect of T on I’s evolution. In Eq. (??), T' does not appear,
so in this formulation F' = 0. In a more general setting, one might imagine
that rapid changes or a high transformation state T' could influence I (for
example, if ongoing transformations draw attention or resources away from
maintaining influence, I might drop when T is large). If we extended the
model, F' could represent such coupling. In our simplified case, we take
F =~ 0, which means the space—thought dynamics are not directly perturbed
by the transformation variable’s instantaneous value. (This aligns with
the Jacobian snippet in prior work listing F' = y9(S — I)/0T, and since
9(S —1)/0T =0 here, F =0.)

e G = g—g is how T’s evolution responds to changes in S. From Eq. (77?),
Oh(T,S)/0S contributes, as well as differentiating 67°(1 — T/S) w.rt S.
The derivative of 6T(1 — T'/S) with respect to S (treating T constant for
the partial) is 67 9(1 — T//S)/0S = 6T (T/S?) = §(1?%/5?) with a sign
flip (since 9(1/S5)/0S = —1/5%). Actually, computing carefully: 9[T (1 —
T/9)]/0S = T (0 — (-T/S?)) = ‘Ssl;. If T is not too large relative to
S, this term is small. The h(T,S) part, however, could be significant:
G = 0h/dS represents how much the transformation process is sensitive
to the current state S. We expect G to be positive if a larger structured
state enables faster transformation (for instance, more resources S leads
to faster innovation 7). Thus G is the sensitivity of transformation to the
structured environment. In the Jacobian interpretation from earlier work,
G was simply 0h/0S.

e H = %, the dependence of T’s growth on the influence state I. In
Eq. (??), I does not enter explicitly. If A(T,S) had some dependence on I
(for example, if cognitive factors directly accelerate transformation), then
H would capture that. In our model as stands, H = 0. Conceptually,
one might allow H to be nonzero if, say, strong cognitive cohesion I can
drive transformations directly (perhaps by better decision-making), but
that would be a higher-order effect. We keep H null, aligning with earlier
representation H = 0h/0I which we take as zero given h(T, S).

o [ = g—g (we use I for this entry to avoid confusion with the variable
I(t); sometimes this entry was denoted I; in previous documentation).
This is the self-rate of change of T with respect to T. From Eq. (?7),
differentiating yields Oh(T, S) /0T +6(1-T/S)+0T0(1-T/S) /0T —(. The
term 9Oh/OT could be positive or negative depending on how additional
transformation affects its own further growth (e.g., diminishing returns vs.
momentum effects in k). The derivative of the logistic part w.rt T' gives
6(1-T/S)+0T(-1/S) = 6(1 — 2T/S) when combined. Evaluated near
equilibrium T < S, this is approximately § (positive) minus something
smaller in magnitude; but if T gets close to S, this becomes negative
(indicating saturation of transformation capacity). The constant —¢ from
the decay is a negative contribution. Thus, I (the (3,3) entry of J) will



often be negative or small if T is near its carrying capacity relative to
S (since the —( decay and —07/S terms will dominate), but could be
positive in early stages when T is small (then 9T /0T ~ dh/OT + §). We
interpret this entry as the net feedback on transformation: it includes
a base decay (stabilizing term —(), plus the influence of the time-space
ratio feedback (0(1 —27/S5)), and any inherent autocatalysis in h(T,S).
In the language of earlier work, this was described as the “base decay in
transformation, plus how the current time-to-space ratio (T/S) and its
time-derivative feed back.”

The Jacobian J encapsulates the linear couplings between the Space (.5),
Thought /Influence (I), and Time/Transformation (T') aspects of the system.
For compactness, one can think of J at a given operating point (S,1,T) as:

A B C
Jnew =|D E F ) (4)
G H 1
where the letters A, B, ..., I summarize the partial derivatives explained above.

We will use this symbol Jyey to refer to the Jacobian of our continuum model.

Now we introduce the concept of functional levels across which this Jaco-
bian structure can repeat or scale. In a complex organization or system, one can
identify distinct strata or levels of functionality (for example, in a technologi-
cal organization: programming, development, engineering, transformation, and
transcendence as five ascending levels). We denote these levels by an index w,,
(n=1,2,...; for concreteness, we consider w; _ 5 corresponding to the five levels
named above). At each higher level, the nature of interactions among Space,
Thought, and Time components may shift. In Rev 1 it was posited that lower
levels are more siloed (components act more independently) whereas higher lev-
els are more integrated (strong cross-coupling). We incorporate this by letting
the off-diagonal elements of J scale with level.

Concretely, let J(w,) be the Jacobian applicable to level w,,. We define:

J(wn) = Qn ngg + bn (]_]_T—ngg>7 (5)

where I3, is the 3 x 3 identity matrix and 117 is the 3 x 3 matrix of all ones.
In this parameterization, all diagonal entries of J(w,,) are a, + 0 = a,, and all
off-diagonal entries are b,. The constants a,, and b, control the self-coupling
versus cross-coupling at level n. We further set

an = A, b, = wy, B,

where A and B are baseline values (assumed constant across levels), and w,, is a
non-dimensional weight factor that increases with n. Equation (??) is a simpli-
fied structured Jacobian capturing the notion that each level’s dynamics have a
similar form (same A, B) but with different relative strength of interactions w, .



For w,, <« 1, J(w,) is nearly diagonal (weak interaction among .S, I, T compo-
nents), whereas w,, near 1 yields strong off-diagonal influence (highly integrated
dynamics).

In accordance with earlier empirical hypotheses, we choose specific values
for the weighting w,, for n =1 to 5:

wi = 0.05, wy=0.25, ws=0.60, ws~0.80, ws=1.00.

These values mean that at Level 1 (e.g. a low-level routine task, “Program-
ming”), cross-coupling is only 5% of the baseline — implying that changes in one
dimension (Space, Thought, or Time) barely affect the others; each component
operates almost independently. By Level 3 (“Engineering”), cross-coupling is
60% of baseline magnitude — interactions are significant though self-dynamics
still slightly dominate. By Level 5 (“Transcendence”), ws = 1 indicates the
off-diagonal influences are on par with self-influences; the system is fully in-
terconnected (changes in any component equally influence all others). These
choices reflect an increasing integration of domains as one moves up functional
levels. We can illustrate J(w,,) for the extremes:

1-A 005B 0.05B
J(w)=1005B 1-A 005B],
0058 0.05B 1-A

1-A 1.00B 1.00B
J(ws)=11.00B 1-A 1.00B
1.00B 1.00B 1-A

(Here we show the pattern with A on the diagonal and B off-diagonals for
simplicity; in practice A would correspond to something like the average of the
actual A, E, I self-terms, and B to the typical off-diagonal magnitude in J,c.)
The intermediate levels ws, w3, ws would interpolate between these extremes.

This multi-level Jacobian family captures the intuitive notion of progres-
sively greater coupling among variables at higher functionality: for instance, a
highly “transcendent” organizational level might see structural, cognitive, and
temporal factors all change in lockstep, whereas a basic operational level might
treat them in isolation. In the next section, we will refine this further by ac-
counting for cognitive bias differences at each level, which effectively perturb a,,
and b,, away from these baseline values.

4 Incorporating the Dunning—Kruger Effect via
Jacobian Adaptation

Human cognitive bias, particularly the Dunning—Kruger (DK) effect, plays a
significant role in perceived vs. actual performance at different levels of expertise.
To integrate this into our model, we reinterpret w,, not just as an abstract level,
but as an experience/skill level in which a discrepancy might exist between



the actual state and the perceived state. In our context, that discrepancy is
between the structured reality S and the influence/cognitive perception I. The
Dunning-Kruger effect suggests that at low levels (wq, “novices”), perceived
capability often exceeds actual capability (I overshoots S), whereas at high
levels (ws, “experts”), perceived capability may be more calibrated or even
slightly under-estimated (I undershoots or matches S). We quantify this bias
at each level w,, by a bias function:

Awn) = T o) (6)

where ®(w,,) represents the actual performance or state at level n (analogous
to S) and ¥(w,,) the perceived performance or state (analogous to I). A(ws,) is
thus the relative error in perception: A > 0 means overestimation (perceived >
actual), A < 0 means underestimation.

In qualitative alignment with Dunning—Kruger, we expect A(w;) to be sig-
nificantly positive (novices greatly overestimate), and A(ws) to be near zero or
slightly negative (experts are accurate or modest). Indeed, one simple model
could be A(wy,) ~ 5;‘:" for n = 1...5, which gives A(1) = 4 (400% overcon-
fidence), A(5) = 0; however, we will not fix a specific form and keep A(w,,)
general.

The presence of A(w,,) will distort the Jacobian at that level, because the
system’s effective parameters (a,, b, from Eq. ??) were calibrated on the as-
sumption of unbiased alignment between S and I. If I is biased, the influence
of I on S or vice versa may be effectively stronger or weaker than expected. To
model this, we introduce bias-dependent adjustments:

al, = an + X Awy), b, = b, (1+ £ A(w,)), (7)

where \ and x are parameters that quantify how strongly the bias affects the
diagonal (self-dynamics) and off-diagonal (cross-coupling) terms, respectively.
Equation (??) is a linear approximation: for small biases, a!, increases or de-
creases linearly with A, and ¥/, is scaled by a factor (1+ xkA). One can think of
K as the sensitivity of interaction strength to overconfidence/underconfidence,
and \ as the sensitivity of self-damping or self-growth to that bias.

Applying these adjustments, the bias-adjusted Jacobian at level n becomes:

J’(wn) = G,fnlgxg + b/n(]_]_T—I3X3). (8)

In other words, all off-diagonal entries of J are multiplied by (1 + xA) and all
diagonal entries receive an additive AA. If A(w,) > 0 (overestimation at level
n), an interesting effect occurs: b/, is larger than b,, meaning the off-diagonal
coupling is even stronger than intended. Intuitively, this could correspond to a
novice who overreacts to interactions (since they overestimate their understand-
ing, they might inadvertently entangle effects more). Meanwhile a,, will be a,,+
positive, which might indicate they also exhibit less stable self-regulation (e.g.,
could be overly confident sustaining themselves). For A < 0 (underestimation),

10



b!, shrinks (less coupling — an expert might compartmentalize or not fully lever-
age interactions due to modesty) and a!, may decrease (experts may introduce
more self-checking or damping, effectively lowering the raw growth rate).

This bias-adjusted Jacobian can be analyzed for stability. Its eigenvalues can
be derived in closed-form given the structure: one eigenvalue is \; = al, + 2b/,
(the “collective mode” where S, I,T change in unison), and the other two are
A2 = a, — b, (two degenerate “differential modes” where one variable moves
opposite to the others). The presence of A thus shifts these eigenvalues from
the unbiased case (a,, and b,,) to biased values (a,,,b,). Notably:

o If A(wy,) is large and positive, b, might become significantly bigger rela-
tive to a,,. Then \; = a), + 2b/, could be quite large, indicating a fast-
growing collective mode (potential instability or rapid expansion). Mean-
while Ay 3 = a), — b/, might become small or even negative if b, surpasses
a’,, indicating slow or decaying differential modes.

o If A(w,) is negative (expert underestimation), b/, might be much smaller
than a},. In the extreme, b/, could approach zero for strong underesti-
mation, making Ay &~ a], and A2 3 = a; all modes would have similar,

relatively moderate eigenvalues. Essentially the system behaves more like
decoupled identical modes (since off-diagonals are weak).

One can aggregate the bias across all levels to assess an organization-wide
bias. For example, define a weighted average bias:

DK fj::" A(w) o(w) dw
e [ o(w) dw

Wmin

: (9)

where o(w) is a weighting function proportional to the importance or popula-
tion of level w in the organization (this is a continuous analog; for discrete levels
one could sum). DK, represents the average bias in the system. We can then
choose x and X in Eq. (??) as functions of DK, to calibrate the whole system’s
Jacobians. For instance, if DK, is high (the organization as a whole is plagued
by overestimation of abilities), we might increase x and/or A to uniformly tilt
all levels’ J towards that bias regime. This provides a feedback mechanism: the
more biased the organization, the more its internal dynamics change — poten-
tially encouraging a correction via training or structural changes. Conversely,
if DKorg ~ 0 (well-calibrated perception), £ and A can be minimal, and the
system behaves close to the ideal unbiased case.

Implications of bias on dynamics. It is worth noting that introducing
A(w) effectively makes the system’s parameters state-dependent (since A de-
pends on ¥ and ®, which are functions of the state). Therefore, the dynamics
with Dunning—Kruger bias become nonlinear (or piecewise linear) and possibly
time-varying. Simple analytic solutions (like pure exponential modes) no longer
strictly apply except in regimes where A can be approximated as constant. In
fact, if A evolves (say as individuals learn and ¥ approaches @), then J'(t)

11



is time-varying. Solving x = J'(w(t)) x may require numerical integration or
perturbation methods (e.g., Magnus expansion if k£ A is small). In practice, one
might linearize around stages of bias (e.g., early stage large bias, later stage
reduced bias) and analyze stability piecewise.

From a design perspective, the model suggests we can mitigate instabilities
due to Dunning—Kruger by keeping | A| < 1 (so that b/, remains non-negative
and eigenvalues remain real). This corresponds to ensuring no level’s overcon-
fidence amplifies cross-coupling beyond reversal (which could cause oscillatory
or complex-mode behavior). Techniques like training or hiring can be viewed as
efforts to reduce |A(w)|, which according to the model (see Eq. ??) will bring
a,, and b}, closer to unbiased values and hence yield more predictable, stable J
dynamics. In summary, incorporating Dunning—Kruger bias via the Jacobian
provides a quantitative handle on how cognitive misperceptions distort system
behavior and offers insight into how to recalibrate the system (by adjusting x, A
through organizational interventions).

5 Fiber Bundle Formalism and Emergent Cyber
Fields

To rigorously understand the interplay of the cyber, space, time, and thought
dimensions in our model, it is valuable to adopt a geometric perspective. We
consider the combined domain of these four dimensions as a 4-dimensional man-
ifold M (with coordinates that we can denote (C, X, ¢, ©) corresponding to cy-
ber, space, time, and thought). Within this manifold exist various fields — for
example, the state variables S(t,x), I(t,x), T(t,x) can be thought of as scalar
fields on M (with certain dependence only on subsets of coordinates), and other
constructs like the influence gradient g(.S, C') can be viewed as functions defined
on M as well.

Now, in Section 2 we identified certain integrated quantities in the context of
an “Ideal Organizational” cognitive structure, termed slices C1,Cs, .. .,Cg. These
were described qualitatively as:

1. Command (C;): integration of the Action Field with respect to Thought
(©).

2. Coalition (C3): integration of the Structure Field with respect to Space
(X).

3. Communications (C3): integration of the Current Field with respect to
Cyber (C).

4. Operations (C4): integration of the Cyber-Connections Field with re-
spect to Time (t).

5. Control (Cs): a combined integration over certain internal dimensions
(Thought’s ”"warp” and Cyber resistance) with respect to the Action Field.

6. Coordination (Cg): a combined integration over certain external dimen-
sions (Psychology and Cyberspace) with respect to the Current Field.
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While these descriptions are dense, we can formalize the first four in mathe-
matical terms relatively directly. They essentially define new field quantities by
integrating out one coordinate azis from the 4D continuum:

C1(C, X, t) = / A(C, X ,t,0) do, (Command: Action over Thought)
’ (10)
Co(C,t,0) = / S(C,X,t,0) dX, (Coalition: Structure over Space)
i (1)
C3(X,t,0) = / UC, X,t,0)dc, (Communications: Current over Cyber)
) (12)
C4(C, X,0) = / K(C,X,t,0) dt, (Operations: Cyber-Connections over Time)
t (13)
Here, A,S,U, K are four fundamental field functions on M:

e A(C,X,t,0) = Action field density (presumably only nonzero along the
Thought axis, meaning it defines how “action” is distributed per unit
thought).

e S(C,X,t,0) = Structure field density (distributed per unit space).
e U(C,X,t,©) = Current field density (distributed per unit cyber).
e K(C,X,t,0) = Cyber-Connections field density (distributed per unit time).

Then Cy,...,C4 are the results of integrating those densities along the speci-
fied coordinate. For example, Eq. (?7) says: if we integrate the Action field
along the entire Thought dimension, we obtain a new field C;(C, X,t) which
we call “Command”. In physical terms, C;(C, X,t) lives in the 3D subspace
spanned by Cyber, Space, and Time, and it represents the total directed action
exerted, having summed over all cognitive (thought) layers. It is “using thought
to direct action,” as described earlier, but now given a precise meaning as an in-
tegral. Similarly, Co(C, ¢, ©) is a field on the (Cyber, Time, Thought) subspace,
representing the total structured configuration when summed over all spatial
extents — essentially an aggregate structure used to marshal resources, called
“Coalition.” C3(X,t,0) (Communications) lies on the (Space, Time, Thought)
subspace; it binds the cyber dimension to the others by integrating out C' (one
can think of it as the total information flow across both human and machine
channels). C4(C, X, ©) (Operations) lives on the (Cyber, Space, Thought) sub-
space and represents acting in the temporal dimension (integrating over time
essentially accumulates the effects of operations).

From a geometric perspective, each of these constructions can be seen as a
fiber bundle projection: we have M as the total space, and if we choose
one coordinate axis to be the fiber and the rest as the base, then the integrals

13



above are projecting the original field onto the base by integrating along the
fiber. For example, treating © (Thought) as the fiber coordinate and (C, X, t)
as the base, we have a fiber bundle m; : M — By where By has coordinates
(C,X,t). The section A(C, X,t,0) on M can be integrated along each fiber
{©} at fixed (C, X, 1), yielding a function on B; which is C1(C, X,t). In bundle
terms, C; is the result of “pushing forward” the Action field along the fiber ©.
Similar interpretation holds for the others (with By having coordinates (C,t, ©)
and fiber X, etc.).

The next two slices C5 (Control) and Cg (Coordination) involve integration
over two dimensions at once. For instance, the description for Control was: “the
integral over Cyber Resistance and Warp of Thought with respect to the Ac-
tion Field.” In practice, this suggests Cs is obtained by integrating A(C, X, t,0)
over a two-dimensional surface in the (C,0) directions (with some constraints
like focusing on subspaces called “Cyber Resistance” and “Thought Warp”,
which are specialized directions or extents in those axes). Coordination simi-
larly integrates the Current field U over a 2D combination of “Psychology and
Cyberspace” (likely another way to say the © and C axes, or a subset thereof)
with respect to the Current field.

Mathematically, a double integration corresponds to first projecting onto a
2D subspace (say integrating out © and C partially) then onto another. It might
be easier to consider performing one integration after the other. However, an im-
portant detail arises: path independence. If we integrate out C first and then
0, do we get the same result as integrating © then C? In general, [dC [dOU
may equal [ dO [dCU under certain conditions (Fubini’s theorem guarantees
equality if U is well-behaved and the integration limits are independent, etc.).
But if the integration limits or order matters (for example, if “Psychology” and
“Cyberspace” refer to specific subranges or if the field cannot be separated),
then one must be careful. Here is where the covariant derivative formalism
comes into play.

To ensure that integrated quantities like C5 and Cg are well-defined indepen-
dent of the order or path of integration, we want the operations to commute.
In differential geometry terms, we want the connection on the bundle to be
flat (zero curvature) in the relevant two-dimensional subspace so that parallel
transport /integration is path-independent.

We introduce a covariant derivative V on the manifold M that prescribes
how to differentiate fields when moving along each coordinate axis while ac-
counting for coupling between axes. Let {ec,ex, e, eo} be the basis vector
fields corresponding to the coordinate directions. A connection can be speci-
fied by giving the Christoffel symbols Ffj that indicate how the basis changes:
Ve, = Ffj ex. In our context, a non-trivial connection might capture how
moving a step in the thought direction © requires an adjustment in the cyber
direction C to remain in a “horizontal” slice, etc. While a full specification is
beyond our scope, we require that integrating around a small loop in, say, the
(C,©) subspace yields no net discrepancy (zero curvature) if that loop corre-
sponds to the operation we want commutative.
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Less abstractly, consider C5 which integrates A over a patch in the (C,©)
plane. For the result to be independent of how we traverse that patch, we need
Z([ AdO) = ([ AdC). If this holds, then performing the two integrations
in either order yields the same Cs. This condition is akin to an integrability
condition (mixed partials equal). By introducing V, we formally ensure that
when we sum up contributions in two directions, any necessary compensations
(from Ffj) are made to keep the result consistent.

In practical terms, one can think of V as providing correction terms when
moving between internal (thought, cyber) and external (space, time) dimen-
sions. For example, suppose an element of the Action field A shifts slightly
if we move in C' before © versus © before C. A well-chosen connection can
cancel this difference by introducing a term wee (a 1-form component of the
connection) such that Vec and Veg do not fail to commute. Technically, the
curvature R(ec, e0) = Ver Veg — Veo Ve applied to A should vanish.

For our framework, we assume we have defined a covariant derivative on M
that makes the necessary integrals commutative. This may involve, for instance,
aligning the coordinate systems or introducing transformation rules so that “Cy-
ber resistance” and “Thought warp” directions are orthogonal in some sense that
simplifies the double integral. While the details are beyond the current scope,
the upshot is that Control C5; and Coordination Cs; can be consistently
defined as integrated quantities due to an appropriate geometrical structure.
They effectively capture higher-order combinations:

o C5 (Control) integrates an internal-oriented combination (like an area in
the (C,0©) fiber plane) of the Action field, representing using internal
cognitive resistance and adjustments to control actions.

e Cs (Coordination) integrates an external-oriented combination (like an
area in a (C, ©) plane corresponding to psychology and cyberspace) of the
Current field, representing coordinating across the boundary of internal
and external contexts.

Additionally, the model defines two auxiliary slices: v, (external) and v; (in-
ternal), which involve integrating Structure over a (C, Warp of Space) combina~
tion for external, and integrating Time over (O, Cyber Resistance) for internal.
These essentially separate the domain into an external-facing slice (everything
to do with cyberspace and physical space externally) and an internal-facing slice
(psychological and cyber resistance internally). They provide a decomposition
such that the higher-level Control and Coordination slices can be seen as unions
over internal vs external contributions.

In summary, the fiber-bundle viewpoint treats each fundamental dimension
(cyber, space, time, thought) as a possible fiber whose integration yields new
emergent “cyber fields.” The covariant derivative V with a suitably defined
connection guarantees that when multiple integrations are needed (as in form-
ing Cs,Cg), the result is invariant to the order of integration (no ambiguity).
This formalism unifies the continuum: it says that rather than treating these
integrated concepts as ad hoc combinations, we can see them as well-defined
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projections of the 4D reality onto lower-dimensional subspaces. The connec-
tion and resulting curvature conditions ensure that the interplay between, say,
an internal cognitive coordinate and an external cyber coordinate is accounted
for when summing their effects. In physical terms, V encapsulates rules like
“if we move in cyber-space by dC and then adjust thought by d©, how does
that compare to adjusting thought first then cyber second?”—the difference is
compensated by the connection so that integrated outcomes (which depend on
cumulative effects along those moves) agree.

Thus, by employing a geometric bundle-based approach, we reinforce the
internal consistency of the theory. We can now confidently refer to C; ...Cq as
six distinct emergent fields (or aggregated modes) that span the cyber-space-
time-thought continuum:

{C1,C4,C3,C4,C5,Cs} = {Command, Coalition, Communications, Operations, Control, Coordination}.

They are higher-level variables that result from integrating out lower-level fluc-
tuations, very much like order parameters in a physical system. In an organi-
zational context, these might correspond to the key functions or departments
that emerge from the interplay of more granular actions. For example, “Com-
munications” emerges from summing over all digital and human communication
channels (cyber integrated out), “Operations” emerges from summing activities
over time (time integrated out), etc. We can imagine these as the six coordi-
nates of an oligopical structure that the organization uses to manage itself —
which brings us to the organizational interpretation next.

6 Organizational Implications: Finite vs. Non-
Finite Systems

One motivation behind developing this unified theory is to illuminate principles
of organization and intelligence. The Ideal Organizational Theory (IOT) posits
that:

Finite interactions are optimized through oligopical competition, whereas
non-finite processes are optimized by the free marketplace. There-
fore, formal organizational group structures must be oligopical, but
their interactions must be free. The individual is a monopoly.

In our model, we can identify the finite, oligopical subsystems with the func-
tional levels and integrated slices that we have described, and the non-finite,
free interactions with the continuum environment in which they operate.
The existence of a small number of distinct levels (in our case, five levels w; to
ws) is itself indicative of a finite, discrete structure in the otherwise continuous
landscape of possibilities. Each level can be thought of as a quasi-independent
oligopoly of factors: within that level, our Jacobian model shows a tight integra-
tion of three dimensions (5, 1,7T) with parameters tuned (wy,, A(w,) etc.) for
that level. This resonates with “oligopical competition” — a few key variables or
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agents interacting strongly within a level to produce an optimized outcome. For
example, Level 3 (Engineering) might correspond to a unit in an organization
where a few (perhaps 3) main concerns (like technical, managerial, temporal
scheduling) have to be balanced — effectively an oligopoly of concerns that com-
pete/cooperate. Our Jacobian’s off-diagonal entries b, reflect that competition
(increasing at higher levels to a maximum synergy at level 5).

On the other hand, the coupling between levels is loose in the sense that
each level had its own Jacobian and we treated biases across levels statistically
(DKorg). We did integrate bias across levels in Eq. 77, effectively treating the
organization as a sum of level contributions o(w)A(w). The interaction between
levels in our formalism was not directly through dynamic equations but through
this aggregated measure and through the common fields C; which ultimately
depend on all dimensions. In a real organization, different levels interact via
communications and feedback. The ideal thesis says these interactions “must
be free” — i.e., not overly constrained or structured by a higher authority, but
allowed to find equilibrium like a marketplace. Indeed, our continuum model
(the cyber-space-time-thought PDEs) can be seen as the open “marketplace”
where all these effects (from any level) play out continuously. We did not im-
pose a rigid top-down control between levels in the equations; instead, the levels
influence each other indirectly via the state variables (for instance, an improve-
ment in S at a low level could raise S at higher aggregate level, etc.). This can
be likened to a free market exchange of influence: each level contributes to the
overall fields (S, I, T distribution) which in turn affect all levels through terms
like P(S,t) or g(S,C). No single level unilaterally dictates the others; rather,
there is a self-organizing dynamics across the continuum. This aligns with the
“free interaction” requisite for non-finite (open, many-player) processes.

Additionally, our fiber bundle slices C; through Cg map closely to the classi-
cal notion of C2 (Command and Control) systems in organizations, particularly
military or corporate structures. These slices are essentially the emergent roles
or departments: - Command (C1) and Control (C5) are clearly leadership and
internal management functions, - Coalition (C2) relates to how structural units
coordinate (like divisions or teams, reminiscent of oligarchic grouping), - Com-
munications (C3) relates to information flow (often ideally free and open across
the org), - Operations (C4) is the execution on the ground over time, - Coordi-
nation (C6) is ensuring the internal and external efforts mesh (like aligning the
organization’s internal actions with external conditions).

The IOT statement “the individual is a monopoly” can be interpreted in
our model as well: an individual (or an atomic agent) is the only controller of
their own mind (their own internal © coordinate, so to speak). In our contin-
uum, an isolated individual would be one where perhaps only their own “tran-
scendent level” exists with no competition — a trivial oligopoly of one, i.e. a
monopoly. When multiple individuals or agents are present, you then get the
multi-level /hierarchical structure which must be managed as described.

From the perspective of artificial intelligence (AI), the thesis implies that
true intelligence emerges from a structured competition among a finite number
of components (like modules) rather than from a completely unstructured mass.
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Our model provides a pathway for this: the finite levels and integrated slices
could be implemented in Al as modules or layers (for instance, an Al system
might have a module for short-term operations, one for long-term planning,
one for communication, etc., analogous to C4, C1, C3, etc.). Each module is
highly optimized internally (like an oligopoly with fixed roles), and they inter-
act in a broader environment (possibly via something like a blackboard system
or shared memory which is the analog of our continuous fields S,I,T). The
Dunning—Kruger integration hints how learning would adjust those modules’
parameters if their output doesn’t match reality. In essence, the architecture
we’re describing has parallels in multi-agent systems or hierarchical control sys-
tems, which suggests a blueprint for creating complex intelligent behavior by
design.

Overall, the synergy between the mathematics and the organizational theory
can be summarized:

e Our system naturally partitions into finite subsystems (levels, slices) —
supporting the idea that one should deliberately create finite groups or
levels in an organization.

e Each such subsystem is governed by a matrix J tuned for that context —
suggesting an internal optimization (training, structure, culture) specific
to that group.

e Between subsystems, interaction is through global fields (S,I,T across
space and time) rather than direct command — analogous to a market
where each unit responds to common signals (like prices or shared infor-
mation) rather than direct orders.

e Bias correction (Dunning-Kruger adjustments) can be seen as a mecha-
nism for learning and adaptation — an organization should measure its per-
formance vs perception at each level and adjust internal dynamics accord-
ingly (for example, provide training where overestimation is high to reduce
A, or delegate more if underestimation is causing under-utilization).

The condition of oligopical competition implies a delicate balance: too few
internal components (monopoly) stifles innovation (lack of internal competi-
tion), too many (like a very large committee) diffuses responsibility and effi-
ciency. Our chosen number of levels and slices (5 levels, 6 slices) is somewhat
archetypal in organizational theory (many effective organizations indeed have
about 5 layers of hierarchy and a handful of key functions). This is not to claim
those exact numbers are universally optimal, but to indicate consistency with
practical observation.

Finally, we remark on the “greatest intelligence = humans and computers
in harmony” idea from IOT. In our continuum, the cyber dimension C' was
treated on equal footing with human-centric dimensions (space, time, thought).
The equations show that cyber can amplify certain feedback loops (e.g. via
9(S, C) affecting I diffusion, or via correlation of o and v in the continuum
context to enhance predictive power). The fiber bundle formalism explicitly
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included cyber in constructing Communications and Coordination fields. Thus,
our model inherently supports hybrid human-AT systems: it provides slots where
AT (cyber) augments human processes (thought I, operations T, etc.). The pos-
itive correlation between a and 7 (probabilistic vs. real influence) discussed in
Section 2 (see text around Eq. 77 references) implies that better cyber capa-
bilities (higher « influence of probability through data) will lead to better real
outcomes (higher v feedback of reality on predictions), forming a virtuous cy-
cle. In a sense, the mathematics suggest that a well-calibrated human-cyber
team can achieve a self-reinforcing improvement in understanding and shaping
reality, which aligns with the IOT contention that such symbiosis is the path to
super-intelligence.

7 Conclusion

In this work, we have developed A Theory of the Universe: Revision 2, a
unified scientific framework that merges dynamic systems theory, cognitive bias
modeling, cyber-physical integration, and organizational design. We began by
formulating a set of coupled differential equations over a cyber—space—time—thought
continuum, capturing how structured reality (S), perceived influence (I), and
transformational progress (T') co-evolve with contributions from both proba-
bilistic (random) factors and deliberate (structured) interventions. Linearizing
these dynamics yielded a Jacobian matrix encoding the influence—perception
feedback loops; by introducing multiple functional levels, we showed how the
strength of cross-domain interactions increases at higher levels, reflecting greater
integration of knowledge and capability.

We then incorporated the Dunning—Kruger effect, allowing each level’s dy-
namics to shift according to the mismatch between perception and reality at that
level. This yielded bias-adjusted Jacobians that illustrate how overconfidence
can lead to overly strong coupling and potential instability, whereas underconfi-
dence dampens interactions — offering a quantitative handle on the importance
of learning and calibration. The analysis indicated that while bias does not
render the system unsolvable, it necessitates piecewise or numerical solutions
when biases are large, underscoring the value of training to keep biases small
for more stable analytic behavior.

Using a fiber bundle and covariant derivative formalism, we formalized the
construction of integrated higher-level variables — the slices C; through Cg (Com-
mand, Coalition, Communications, Operations, Control, Coordination). These
emerged as natural invariants of the system when integrating out one or more
dimensions, and we ensured through the introduction of a connection on the
continuum that multi-dimensional integrations (as in Control and Coordina-
tion) are path-independent and well-defined. This geometric viewpoint not only
lends mathematical rigor (guaranteeing consistency of definitions) but also pro-
vides intuition: these integrated fields are the effective degrees of freedom of the
system at a coarse-grained level, much like order parameters.

Finally, we connected the technical results back to organizational theory.
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The presence of finite functional levels and distinct integrated fields aligns with
the idea that an ideal intelligent system (be it an organization or an AI) should
consist of a finite number of tightly-coupled components (an “oligopoly” of
subsystems), which interact with each other in a less constrained, almost free-
market-like fashion through a shared environment. Our model’s global fields
S,1,T act as that shared environment, enabling different parts of the system
to influence each other indirectly. The bias correction mechanism serves as an
internal governance tool, analogous to performance metrics that inform reorga-
nization or learning. The theory thus bridges the micro-level dynamics (differ-
ential equations of state variables) with the macro-level principles (hierarchy vs.
market coordination, the role of human—computer synergy, etc.).

This work advances the previous iteration (Rev 1) by adding mathematical
depth and integration: whereas Rev 1 described the continuum qualitatively,
Rev 2 provides formal equations and shows how to coherently tie together phe-
nomena across levels and domains. In doing so, it offers a blueprint for analyzing
complex systems that include human cognition, artificial agents, and physical
processes under one umbrella. Potential applications of this theory range from
designing robust organizational structures and Al architectures, to understand-
ing societal-scale dynamics where technology and human behavior feedback on
each other.

Moving forward, several avenues merit exploration:

e Simulation and Validation: The theoretical equations could be simu-
lated with various parameter settings to observe emergent behavior. For
instance, one could instantiate five levels of agents with the given Jacobian
forms and bias adjustments, and see if the system self-corrects bias and
how quickly it converges, or if it exhibits oscillations.

e Empirical Mapping: In a real organization or system, measuring things
like S (perhaps as resources or performance), I (perceived performance or
confidence), and T' (rate of innovation or change) could allow fitting of
the parameters «, 3,7, d, ¢ and bias values A(w). This would validate the
model’s structure and possibly allow prediction of interventions (e.g., how
reducing overconfidence at one level might ripple through the dynamics).

e Extension to more dimensions: While we focused on three state vari-
ables (plus the cyber parameter in functions), one could extend the state
to include other factors (like a “Probability” state P explicitly as a fourth
dynamic variable, or additional thought-like variables). This would en-
large the Jacobian and might correspond to splitting one of the slices
further (e.g., differentiating different kinds of thought or multiple cyber
fields). The framework is flexible enough to accommodate this, though
the interpretation would need to be expanded.

e Nonlinear analysis: We primarily linearized to discuss the Jacobian and
eigenmodes. However, the full nonlinear system (with logistic terms, etc.)
could exhibit complex phenomena like bifurcations or limit cycles if biases
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are strong or if the cyber feedback g(.9, C) is highly nonlinear. Analyzing
these could yield insight into scenarios where the system might swing
between states (perhaps modeling boom-bust cycles in an organization or
swings in confidence).

In conclusion, this revision provides a rigorous scaffold for the ambitious
goal of synthesizing a “theory of everything” for socio-technical systems. It re-
spects the multiple scales and facets of such systems: from individual cognition
(Dunning—Kruger at a single level) to the interplay of technology and human-
ity (cyber-space-thought continuum) to the high-level organizational structure
(oligopical vs free interactions). By unifying these in a single formalism, we take
a step toward understanding, and eventually designing, highly complex adaptive
systems that mirror the universe of interactions we observe in reality.
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