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Abstract

We present a further-refined unified theoretical framework (Revision 3) that builds
upon a cyber—space—time—thought (CSTT) continuum model of intelligence by formally
incorporating game-theoretic equilibrium concepts, advanced geometric structures, and
ideal organizational principles. In this revision, we embed a utility measure into the
thought dimension, allowing for the formulation of a Nash equilibrium condition within
the continuum—showing how equilibrium states arise naturally from utility optimiza-
tion by cognitive agents in the model. We extend the Jacobian multi-level represen-
tation by introducing bias terms (modeling the Dunning-Kruger effect) directly into
the linearized dynamics and associating a curvature to each functional level via a fiber-
bundle formulation. Each functional level (five in total) is modeled as a state-dependent
fiber bundle wi-ws, and we define compound bundles (OPS, ARCH, INNOV, POW)
that group these levels into broader functional domains. The differential geometry of
the continuum is thus enriched with non-linear connections capturing cognitive bias
(as curvature) and synergy across actor interactions, with utility treated as an intrinsic
coordinate. We then apply principles from Ideal Organizational Theory to illustrate
how a structured hierarchy of finite internal “oligopical” interactions combined with
free external engagement can yield superadditive collective intelligence, offering insights
into the design of multi-agent Al systems. The result is a formally structured theory
(Rev 3) that integrates game-theoretic equilibrium, cognitive bias adjustments, and
higher-order geometric coupling into the prior CSTT framework, providing a compre-
hensive foundation for understanding the co-evolution of physical, informational, and
cognitive domains.

1 Introduction

Understanding the interwoven nature of physical, digital (cyber), and cognitive realities
requires a framework that spans multiple domains of influence and decision-making. In this
work, we develop a comprehensive model termed the Cyber—Space—Time—Thought (CSTT)
continuum, which unifies several previously disparate components: (i) a multi-level influence—
perception dynamic captured by a Jacobian matrix across hierarchical functional levels; (ii)
a set of coupled differential equations governing evolution over cyber, spatial, temporal, and
thought dimensions; (iii) a treatment of cognitive bias (the Dunning-Kruger effect) within
the system’s geometry; (iv) principles from an Ideal Organizational Theory distinguishing



finite vs. non-finite systems and advocating an oligopical (small-group competitive) internal
structure; (v) a fiber-bundle formalism with a covariant derivative to bind these elements
into a coherent geometric structure; and (vi) an embedded utility coordinate that allows
formalizing equilibrium conditions (Nash equilibria) emerging from the interactions in the
thought dimension.

In Revision 1 of this theory, a narrative description of the CSTT continuum was given,
along with initial differential equations coupling these dimensions. In Revision 2, we ex-
tended that foundation by incorporating a formal multi-level cognitive model with bias and
by enforcing consistency through a covariant geometric approach. The aim was a rigorous,
self-consistent theory describing how digital/cyber factors (e.g. information systems), phys-
ical space-time processes, and human thought co-evolve and influence each other. In this
Revision 3, we further refine the framework by explicitly introducing a utility-driven equi-
librium perspective and by enriching the geometric structure of the model. Specifically, we
formalize how rational agents within the thought dimension attain equilibrium (in the Nash
sense) based on utility optimization, and we integrate cognitive bias as a curvature in the
fiber-bundle representation, linking the misalignment of perceived vs. actual performance to
geometric distortion. We also extend the multi-level model by treating each functional level
as a fiber in a bundle (with state-dependent characteristics) and grouping levels into com-
posite bundles to analyze broader functional domains. These enhancements provide deeper
insight into the role of internal structure and bias in shaping the evolution of the system.

The remainder of this paper is organized as follows. In **Section 2**, we formulate
the core dynamic field equations for the cyber—space—time—thought continuum, defining the
key state variables and interactions, and we discuss the emergence of equilibrium states
from an embedded utility function in the thought dimension. **Section 3** develops the
Jacobian linearization of these dynamics and introduces a hierarchy of five functional lev-
els (w; through ws) with level-dependent coupling strengths, capturing influence—perception
feedback across organizational levels; we also set the stage for including biases and synergies
in this linear model. In **Section 4** we incorporate the Dunning—Kruger bias by adjusting
the Jacobian entries based on the discrepancy between perceived and actual performance at
each level, interpreting these adjustments in terms of geometric offsets. **Section 5** recasts
the framework in a fiber-bundle context: we define how integrated ”cyber-field” quantities
emerge by integrating fundamental fields over one or more dimensions (space, time, thought),
and introduce a covariant derivative to maintain consistency when combining these integrals
across varying contexts. In this section we also formalize each functional level as a fiber
(with a curvature associated to its bias) and construct compound bundles (OPS, ARCH,
INNOV, POW) to examine higher-level integrations. **Section 6** discusses the organiza-
tional implications of the model, relating the mathematics to the idea of finite (oligopical)
internal structure versus free interaction with the external environment, and demonstrates
how the ideal structural principles can induce super-additive collective intelligence in multi-
agent (Al) systems. Finally, **Section 7** concludes with a summary and an outlook for
future work.



2 Dynamic Equations of the Cyber—Space—Time—Thought
Continuum

At the heart of our theory is a set of differential equations that describe how the state of the
system evolves through interactions among four fundamental dimensions: cyber (C'), space
(x), time (t), and thought (©). We consider three primary state variables that emerge from
these dimensions:

e S = S(t,x): astructured reality state, associated primarily with the spatial dimen-
sion. This can represent an organized or physical resource/configuration distributed in
space (for example, economic or structural power at location x and time t).

e [ = I(t,x): an influence (information) state, associated with the thought dimen-
sion. This variable captures perceived influence, information, or cognitive emphasis at
location x and time ¢ (e.g. the level of information awareness or perceived capability
in that region).

e T'="T(t,x): a transformation state, associated with the temporal dimension. This
represents an evolving measure of progress or cumulative change over time (for instance,
technological innovation or transformative development that has accumulated up to
time t at location x).

In addition, the cyber dimension enters the model through parameters that modulate
the above interactions. We introduce an exogenous function C(x) to represent the level of
cyber connectivity or digital augmentation at a given location (for example, the presence of
communications infrastructure or Al assistance at position x). The function C'(x) influences
the coupling terms in the dynamics below, effectively making certain processes more efficient
where connectivity is high.

We propose the evolution equations for the fields S(¢, z), I(t,z), and T'(t, ) as a system
of coupled partial differential equations (PDEs) in time (and implicitly space, for distributed
systems):

%:ap(s,t) + B(I,t) + V-(DVS), (1)
O V(5. 0) VD) + 41 (S 1), 2)
aa—:g:h(T,S)+6T<1—g> ~ (T. (3)

Equation (??) governs the structured state S. The term « P(S,t) represents intrinsic
evolution of structured reality (e.g., a growth or production term depending on S and pos-
sibly external input at time ¢), while §X(I,t) represents the influence-driven contribution
to S (capturing how cognitive influence or information I might be converted into tangible
structure or organization over time). The third term V - (D VS) is a diffusive spatial cou-
pling (with diffusion coefficient D), which causes the structured resource S to spread or



equalize over space x (for instance, migration or distribution of resources from areas of high
concentration to low concentration).

Equation (??) describes the evolution of the influence state I. The first term V -
(9(S,C) VI) indicates that gradients in I (differences in influence or information across
space) drive a flow of influence from regions of high I to low I. The effective conductiv-
ity of this influence flow is modulated by the function ¢(S,C'), which depends on the local
structured state S and the cyber connectivity C'. In physical terms, if S is high (a strong
structural foundation or large population base) or if C'is high (robust digital networks), then
influence can diffuse more effectively (a large g enhances the spread of ideas/information).
Conversely, if S is weak or there is little cyber infrastructure, the propagation of influence
I is more limited (small g yields slower or weaker diffusion). The second term I (S — I)
is a logistic growth term for /. It introduces a non-linear feedback: if the structured reality
S exceeds the current influence I (i.e. there is unrealized potential or under-perception),
the positive difference (S — I) causes I to grow (amplifying influence or perceived capacity,
scaled by rate ). However, as I approaches the value of S, this growth term diminishes,
and if I were to overshoot S, the term becomes negative (making I decay back down). This
logistic behavior models a tendency for perceived influence I to be bounded by the actual
structured state S in the long run; I will self-correct downward if it exceeds what S can
support. Notably, the formulation vI(S — I) inherently provides a saturation effect and an
effective decay for I without requiring a separate linear decay term: when [ is larger than
S, the negative contribution automatically reduces I. The coupling of I to S in this manner
captures a fundamental population vs. influence alignment tendency: influence (a cognitive
or perceived quantity) cannot sustainably exceed the real capacity or structure supporting it
(the population or resource base), and conversely, a surplus of structure relative to influence
creates a gradient that drives greater influence.

Finally, Eq. (??) governs the transformation state 7. The function h(7,S) is a general
(possibly external or higher-order) driving term that dictates how transformations accumu-
late based on the current transformation 7" and structure S. For example, h(7,S) might
represent an exogenous innovation rate or policy effect that can inject transformational
change depending on the context (such as increased research effort when resources S are
plentiful). The term 6 7' (1 — 7'/S) is another logistic-like growth term: it causes T' to grow
when it is small relative to S (when 7'/S < 1, this term &~ 07T encourages exponential growth
of T'), but it imposes a limit as 7" nears S (when T approaches S, the factor (1 —-7/S) — 0,
slowing further growth). This captures the idea that transformational progress is bounded
by the current structured capacity S—one cannot transform or innovate beyond what the
underlying state can support at that time. The last term —( T represents a baseline decay or
dissipation of transformation (with ¢ > 0): in the absence of ongoing support or drive, the
accumulated transformations will gradually fade or be lost over time. This linear decay term
(introduced in Rev 2) ensures stability by preventing indefinite accumulation of 7" without
upkeep, reflecting natural regression or obsolescence of progress if not continually renewed.

Taken together, the system (?7)—(??) provides a coupled model of how an organized state
(), its perceived influence (1), and its transformational progress (") co-evolve. The cyber
factor C'(x) enters indirectly via the coupling function g(.S, C') (and potentially through h or
P if those incorporate connectivity effects), ensuring that digital infrastructure can enhance
both the spread of influence and the rate of transformation.
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Utility and Equilibrium Interpretation. An important feature of the CSTT dynamic
equations is that they admit steady-state solutions which correspond to a kind of equilibrium
among the interacting dimensions. Setting 0S/0t = 01/0t = 0T /0t = 0 in Eqs. (7?7)-(?7),
we can derive conditions for equilibrium. In particular, from Eq. (??) the steady-state
requires v I (S — I) = 0 (assuming boundary conditions make the diffusion term V - (¢ VI)
vanish or balance out). In non-degenerate cases where I # 0, this condition yields

S—1 =0,

implying that at equilibrium the influence level must match the structured reality: I* = S*.
In other words, the long-run outcome drives the perceived influence to equal the actual
capacity of the system. This alignment I = S reflects a balance where there is neither a
deficit of influence nor an overshoot. Likewise, from Eq. (?7) a steady state (for 97'/0t = 0)
with nonzero T" would typically satisfy 7'/S = 1 — % in the simplest case (neglecting h), or
more generally an equilibrium relationship between 7" and S determined by the interplay of
growth and decay terms. For our discussion, the key point is that in a stable equilibrium,
all three state variables settle into constant values or balanced distributions such that their
mutual feedback is consistent: no further change occurs.

We can interpret the condition I* = S* in game-theoretic terms by considering that each
"agent” or local sub-system in the continuum has an implicit utility function associated with
the state. Imagine that at each location or for each functional unit, there is a payoff to having
influence I that reflects both the benefits of influence and the costs or limits imposed by the
available structure S. For example, an agent’s utility might increase with I (as influence
or information allows it to achieve goals) but suffer if I greatly exceeds S (since influence
without substance can lead to instability or wasted effort). One simple conceptual utility
could be U o I — %/@ % for some x > 0, which grows with [ but has diminishing returns
and a penalty for I beyond S. Such a utility is maximized when I = S. In general, when
every agent in the system maximizes its utility (considering S as given by the environment
or collective structure), the resulting Nash equilibrium is characterized by the condition that
no agent can increase its utility by unilaterally changing its influence I. This condition
mathematically leads to 0U/0I = 0, which in the illustrative case above gives S — I = 0.
Thus, the equilibrium I* = S* can be viewed as a Nash equilibrium of an implicit game
in which each agent adjusts its influence to best respond to the current state of reality. At
this equilibrium, perceptions (influence) are perfectly calibrated to reality (structure), and
no single part of the system has an incentive (in terms of utility gain) to deviate.

It is remarkable that the dynamic law (?7?), by virtue of the logistic term, naturally drives
the system toward this equilibrium alignment. In essence, the CSTT continuum equations
incorporate a built-in tendency for the system to find a self-consistent equilibrium between
belief/information and reality. The embedded utility in the thought dimension (represented
by the role of I seeking to match S) ensures that the steady-state of the evolution is not
arbitrary, but rather corresponds to an optimality condition (no further improvements in
influence can be made without increasing the underlying structure). In this way, the contin-
uum model merges a game-theoretic equilibrium concept (each component settling on the
best response given others) with physical dynamical evolution. We will see in later sections
that this equilibrium notion, when extended to multiple interacting levels of organization,
underpins the emergence of stable, optimized structures in our theoretical universe.



3 Jacobian Linearization and Hierarchical Functional
Levels

To analyze the system’s behavior at different scales of organization, we adopt a linearized,
multi-level representation of the dynamics. We consider a discrete set of functional levels,
{w1, wa, ..., ws }, each of which corresponds to a distinct scale or layer of cognitive/organizational
activity (for concreteness, one might imagine w; as a low-level operational task and ws as a
high-level strategic or visionary layer, with ws being an intermediate engineering/management
layer, etc.). At each level w,, the interactions among the three state components (S, 1,T)
can be approximated by a Jacobian matriz J(w,) that captures the local linear response of
one component to small changes in another. In essence, J(w,) encodes the instantaneous in-
fluence that each dimension (space/structure, thought/influence, time/transformation) has
on the others at that level.

Empirical and theoretical considerations (proposed in Revision 1 and refined in Revi-
sion 2) suggest that lower levels tend to be more ”siloed” or independent in their internal
dynamics, whereas higher levels exhibit more integration or coupling between factors. That
is, at w; (the most granular level) changes in S, I, or T largely affect only that same com-
ponent (e.g., a small spatial structural change has minimal immediate effect on influence
or progress at that low level). In contrast, at ws (the highest level), a perturbation in any
one dimension swiftly impacts the others (e.g., a new idea or influence at the strategic level
rapidly alters resource allocation and timelines). To capture this gradation, we parameterize
the Jacobian at level w,, as follows:

J<wn) = ap I3><3 + bn (11T - I3><3)7 (1)

where 5.5 is the 3 x 3 identity matrix and 117 is the 3 x 3 matrix of all ones. In this
form, all diagonal entries of J(w,) are a, (since 117 — I has zeros on the diagonal), and all
off-diagonal entries are b,. The parameter a,, represents the strength of self-coupling (each
dimension’s influence on itself) at level n, while b, represents the uniform cross-coupling
strength (each dimension’s influence on the others) at that level.

For simplicity, we assume a baseline self-coupling A and baseline cross-coupling B that
are the same for all levels, and let a dimensionless weight w,, scale the cross-coupling at each
level. In other words, we set

an = A, b, = w, B,

with 0 < wy; < wy < --- < wys < 1. Here w, increases with n, reflecting the intuition
that higher levels have relatively stronger inter-component interactions. Equation (?7?) is
thus a structured Jacobian ansatz in which each level’s dynamics share a similar form (same
A, B), but differ in the degree of coupling given by w,. For example, we might choose (in
arbitrary units) A = 1 and B = 1 and assign specific values w; = 0.05, wy = 0.25, ws =
0.60, wy = 0.80, ws = 1.00. These values mean that at Level 1, cross-coupling is only 5% of
the baseline—implying that changes in one dimension have only a very small effect on the
others (the dynamics are nearly decoupled). By Level 3, cross-interactions are significant
(60% of baseline) though self-dynamics still slightly dominate. By Level 5, ws = 1 indicates
the off-diagonal influences are on par with self-influences; the system’s components at that
level are fully interconnected (a change in any component equally influence all others).
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To illustrate the extreme cases, the Jacobian matrices for the lowest and highest levels
would be approximately:

A 005B 0.05B A 1.00B 1.00B
J(w) =~ [005B A 0058, J(ws) = [1.00B A 1.00B
0.058B 005B A 1.00B 1.00B A
1 0.05 0.05
If A=1 and B = 1 for simplicity, these become J(w;) = [ 0.05 1 0.05| and J(ws) =
0.05 0.05 1
111
1 1 1]. We see that at the lowest level, the Jacobian is almost diagonal (the system
111

behaves as if S,I,T were independent factors locally), whereas at the highest level, the
Jacobian has equal entries (indicating that any local change mixes all factors together—an
illustration of maximum synergy or integration).

This hierarchical Jacobian model encapsulates the notion of an oligopoly of influences at
each level. At Level 1, each dimension can be thought of as an almost separate “monopoly” on
its behavior (the cross-influences are negligible). By Level 5, we have effectively an oligarchy
of three factors tightly interlinked (each of the three dimensions strongly co-determines the
outcome). Intermediate levels have a small number of dominant interactions, aligning with
the idea that a few key variables or actors interact within that level. Notably, one can
interpret the off-diagonal coupling b,, in terms of synergy or coordinated interaction among
different actors or sub-processes at that level. If we imagine that within each level there are
conceptual “actors” focusing on the structural, cognitive, and temporal aspects respectively,
then a larger b, means those actors significantly influence each other (sharing information,
aligning decisions—a synergistic effect). In contrast, a small b, would mean each actor
operates more independently, with little feedback from the others. Therefore, w,, increasing
with n implies that higher-level actors exhibit greater mutual synergy. In effect, each level
consists of a small set of key factors (or decision-makers) whose interactions may range from
nearly independent or competitive (when b, is small) to highly cooperative (when b, is large).
Thus, as n increases, the balance shifts from siloed or even conflicting sub-dynamics to a
harmonized, superadditive collective dynamic at the top level.

It is important to note that the Jacobian matrices J(w,,) as formulated describe the actual
coupling strengths among the variables at each level. In the real system, agents at different
levels might not perfectly perceive these couplings. Cognitive biases can lead, for instance,
to overestimating one’s own influence or underestimating cross-effects. Thus, in the next
section we will introduce bias adjustments to J(w,) to distinguish between the true dynamics
and the agents’ perceived dynamics at each level. Additionally, the equilibrium-seeking
behavior discussed in Section 2 (driven by utility optimization in the thought dimension) is
not explicitly shown as a separate term in J(w,,); effectively, it influences the dynamics by
governing how I responds to S over time (as captured nonlinearly in the PDE model). One
could extend the linear model by including a notional “utility” variable or by augmenting
the state to directly account for decision adjustments, but for our purposes the effect of
utility-based adjustments is reflected in the bias corrections and higher-level coordination



rather than in an explicit entry of the Jacobian. We proceed with the unbiased J(w,) form
(??7) as the foundation, and will incorporate biases as perturbations to this form.

4 Incorporating Cognitive Bias: Dunning—Kruger Ad-
justments

Human (or agent) perceptions of performance often deviate systematically from reality. The
Dunning—Kruger effect is a well-documented cognitive bias wherein individuals of low ability
tend to overestimate their own competence, while individuals of high ability may underes-
timate theirs. In the context of our multi-level model, this implies that actors operating at
different functional levels w, might not accurately perceive the effectiveness of their actions
or the strength of interactions among variables at that level. We denote by A(w,,) the bias
(discrepancy) at level n, defined as the perceived performance minus the actual performance
at that level. A positive A(w,) indicates overestimation of capability (over-confidence) at
level n, whereas a negative A(w,,) indicates underestimation (under-confidence).

We incorporate the Dunning-Kruger bias into our Jacobian framework by adjusting the
coupling parameters a,, and b, for each level to yield a perceived Jacobian that differs from
the true (unbiased) Jacobian. In effect, an actor at level w, operates under a Jacobian .J(w,,)
which has entries distorted by A(w,,). One convenient parametrization is:

an = ap + K1 Awy), by, = by — Ko A(wy),

for some coefficients «q1,ko > 0. Here a, and I~)n are the self- and cross-coupling terms
that the level-n actors think are in effect. If A(w,) > 0 (overconfidence), then a, > a,
(the agent overestimates its self-efficacy) and b, < b, (the agent underestimates external
influences), consistent with intuitive expectations for the Dunning—Kruger bias. Conversely,
if A(wy,) < 0 (an expert who is modest about their abilities), then a,, < a, (they undervalue
their own direct impact) and b, > by, (they overestimate how strongly outside factors or other
dimensions will affect outcomes). While the linear model above is simplistic, it captures the
qualitative effect of bias on the Jacobian: it skews the perceived balance between independent
control and interdependence at each level.

These biased perceptions can have important consequences. For instance, at lower levels,
an overconfident agent might act as if it can ignore feedback from other dimensions (believ-
ing b, is small), potentially leading to mis-calibrated actions that do not account for crucial
influence or time effects. At higher levels, a highly competent agent might be overly con-
servative, effectively behaving as if a,, is lower (doubting their own contribution) and that
cross-couplings b, are higher (imagining constraints or interferences that are stronger than
they truly are). Such distortions can reduce the efficiency or optimality of decision-making
at each level.

To quantify the overall bias in the system, we can define an aggregate bias measure for
the entire organization or multi-level system. Let o(w,) be a weighting factor representing
the relative importance or contribution of level w,, to the system’s outcomes (for example,
o(wy,) could be the fraction of total organizational output or decision influence attributable
to level n, with > o(w,) = 1). We then define the organization-wide bias as a weighted



sum of level biases: .
Aorg = Z O(Wn) A(‘*WL) ) (5)
n=1

which is positive if on the whole the system’s actors overestimate their performance, and
negative if the system underestimates its performance. This A, provides a single metric
for how cognitive bias pervades the entire multi-level organization.

Geometrically, the presence of A(w,) can be interpreted as a misalignment between the
actual state-space at level n and the perceived state-space of the agents at that level. If we
imagine moving through the hierarchy of levels, these misalignments act like a small ”twist”
or rotation at each level. In a continuous analogy, if w were treated as a continuous coordinate
parameterizing levels, the bias A(w) would function somewhat like a gauge field that shifts
the frame of reference. Transporting information or state upward or downward across levels
in the presence of these biases would accumulate a discrepancy. In more formal terms, the
bias can be associated with a non-zero curvature in the fiber-bundle representation of the
multi-level system (to be discussed in the next section). Intuitively, if one tries to integrate
or compare states across levels without accounting for bias, one finds a loop does not close:
following the system from level w,, to w,, and back (through some path in the space of levels
and states) would not return one to the exact original state, because the biased perceptions
have effectively curved the trajectory.

In summary, incorporating the Dunning—Kruger effect into our model means that each
level w,, has two sets of dynamics: the true dynamics (governed by J(w,)) and the perceived
dynamics (governed by .J(w,)). This distinction will play a role when we consider how
different levels interact or communicate, since biases can filter or distort the information
exchanged. In the following section, we recast the entire framework in terms of a fiber
bundle, which provides a natural way to handle these level-by-level differences (including bias,
w,, coupling variation, etc.) through the mathematical concept of a connection (covariant
derivative). This will allow us to formally describe how to ”integrate out” or combine effects
across the cyber, space, time, and thought dimensions while accounting for the structural
variations and biases at each level.

5 Fiber Bundle Formulation and Multi-Dimensional
Integration

To unify the various components of our framework, we cast the CSTT continuum and the
functional levels into a fiber bundle structure. This approach allows us to integrate phenom-
ena across different dimensions (cyber, space, time, thought, and the hierarchy of levels)
in a geometrically consistent way. In a fiber bundle, one identifies a base space and a fiber
attached to each point of the base, along with a connection that specifies how fibers at dif-
ferent base points relate (i.e., how to "move” through the bundle). In our context, we have
multiple candidates for base and fiber choices, but a convenient abstraction is to treat the
functional level index w as an additional coordinate (akin to a fifth dimension, discrete
or continuous) and consider the triad of state variables (S, ,T') as defining a fiber attached
to each w.



More concretely, imagine an abstract manifold €2 representing the range from w; to ws.
At each level w € €2, we have a local state space spanned by small deviations in (S, 1,T)
around that level’s operating point. This local state space can be thought of as a fiber F,,.
The Jacobian J(w) discussed in Section 3 characterizes the dynamics within F,,. However,
as we move from one level w to another w + dw, the parameters of the fiber change (e.g.,
Wy, Gy, by, and bias A(w) vary). In other words, the fiber F, 4, is not identical to F; it
is "tilted” or scaled relative to F, due to the changing coupling strengths and biases. To
compare or integrate states between F,, and Fi,.4,, we must introduce a connection that
accounts for this change of basis.

We denote by V the covariant derivative associated with moving along the level di-
mension (and potentially along the other dimensions as well). This covariant derivative
includes correction terms (connection coefficients) that subtract out the spurious changes
due to differing frames. For example, consider comparing the influence variable I between
two levels. A naive derivative dI /dw would include differences arising purely from the fact
that influence at w; is measured in a somewhat different "unit” (in context of coupling) than
influence at w,. The connection I' provides a term —I' that adjusts for biases and scaling,
ensuring that VI represents a genuine change in influence, not just a change of measure-
ment scale. In practice, one would encode the bias A(w) into such connection terms. For
instance, a simple connection rule might subtract A(w) when differentiating a quantity that
involves perceived vs. actual values, effectively aligning the coordinate frames as we move
through €. The result is that when we integrate influences or structures across multiple
levels, the covariant derivative V guarantees consistency: an influence increment at a lower
level is correctly transported and interpreted at a higher level without miscounting due to
bias or different coupling scales.

Beyond the level dimension, the fiber bundle viewpoint also helps integrate across the
physical dimensions. We can treat the spatial position x and time ¢ as part of a base manifold
(together with w), and consider that at each (x,t,w) there is a fiber representing, say, the
space of possible thought-states or cyber influences. Alternatively, we may choose the base as
(x,t) and treat the combined thought /level structure as part of the fiber. There is flexibility
in formulation, but the key idea is that when we integrate a field over one dimension, we use
the connection to remain consistent with variations in another. For example, if we define
a cyber-field Cgeq(z,1t) f@ f(S,I,T)dO by integrating some function of the fundamental
fields over the thought dimension (or over discrete levels), the covariant derivative ensures
that this integration commutes properly with differentiation in x or ¢. In plain terms,
we can combine information from space, time, and thought without double-counting or
misalignment, because the connection V corrects for any curvature in the multi-dimensional
domain.

An important consequence of this formalism is the appearance of curvature when bi-
ases and level-dependent couplings exist. The curvature tensor R associated with the con-
nection V will generally be nonzero in a system with Dunning-Kruger bias and varying
wy. Intuitively, R # 0 signifies that if one transports a state around a closed loop in the
multi-dimensional base (say, going up from a lower level to a higher level, then moving in
time or space, and then coming back down to the original level), one does not return to the
identical state: there is a residual difference. This is exactly what we expect in a biased
system—going around the "loop” of levels and back can leave an influence or perception
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offset, for instance. The curvature thus provides a quantitative measure of the intrinsic in-
consistency (or twisting) introduced by biases and heterogeneous coupling. In an unbiased,
homogeneous system, the curvature would vanish, meaning one could integrate freely across
dimensions in any order and arrive at the same result (the system’s geometry is flat in that
sense). In our case, the non-zero curvature encapsulates phenomena like the Dunning—Kruger
effect and the increasing integration at higher levels, all within one geometric object.

Finally, we introduce the notion of compound bundles to group certain functional
levels into larger domains of analysis. Often, we may not need to distinguish all five levels
in detail, but rather focus on broader categories such as Operations, Architecture, Inno-
vation, and Power (as per Ideal Organization Theory). We define four compound bundles
Bops, BarcH, Binnov, Brow, corresponding to the Operational, Architectural, Innovational,
and Power domains respectively. These can be seen as aggregations of the fibers of specific
levels: for example, Bops might encompass the fiber(s) associated with routine execution and
implementation (e.g., wy), Barcnu the fiber for systematic design and engineering concerns
(e.g., wa), Binnov the fiber for creative and adaptive development (e.g., ws), and Bpow the
combined fiber for high-level transformation and transcendence (aggregating wy and ws to-
gether). Each B thus constitutes a higher-level fiber bundle whose base might be taken as a
subset of ) (or a collapsed version of {2 with five levels reduced to four domains), and whose
fiber is effectively the direct sum of the constituent level fibers (making Bpow, for instance,
a 6-dimensional fiber if it merges the state spaces of level 4 and 5). Within each compound
bundle, the internal connection inherited from the finer-level description ensures that the
multiple levels’ contributions are synchronized. This construction is valuable for analyzing
the system at a coarser granularity: it aligns with the Ideal Organizational Theory notion
that a finite internal structure (here four compound domains) coordinates internally (each
domain having oligopical integration of components) while remaining relatively independent
and "free” in their external interactions.

By formulating the CSTT continuum and its functional hierarchy as a fiber bundle with
an appropriate connection, we achieve a unified mathematical description. We can now sys-
tematically account for how structure (.5), influence (1), and transformation (7°) at different
places, times, and levels all combine to yield emergent, higher-order behaviors. In particu-
lar, this formalism sets the stage to demonstrate how an ideal structural configuration of the
system can lead to outcomes where the whole is greater than the sum of its parts, which is
the topic of the next section.

6 Organizational Implications: Ideal Structures and
Collective Intelligence

One motivation for developing this unified theory is to illuminate how ideal organizational
structures can maximize collective intelligence. The Ideal Organizational Theory (IOT)
provides a qualitative guideline: finite groups operate best through oligopical competi-
tion/cooperation (a few strong actors interacting), while systems with unbounded partic-
ipants achieve optimality through open, free-market-like interactions. In other words, a
well-defined organization should have a small number of tightly interacting internal units,
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and at the same time it should allow unrestricted exchange with its external environment. A
pithy summary given by IOT is: ”Finite interactions are optimized through oligopical compe-
tition, whereas non-finite processes are optimized by the free marketplace. Therefore, formal
organizational group structures must be oligopical, but their interactions must be free. The
individual is a monopoly.” In our theoretical model, we can clearly identify these principles
at work.

First, consider the finite internal structure of the system. In our case, the functional
hierarchy (whether viewed as five distinct levels or four compound domains) represents a
discrete, finite set of interacting units. Within each unit (each level or domain), our Jaco-
bian analysis showed a tight integration of components S, I, T — essentially an oligopoly of
influences. For example, at Level 5 (or in the Power domain), we had three strongly coupled
factors (fully interconnected S, I, T dynamics) acting in unison; at lower levels, a few factors
interacted with moderate coupling. This reflects the ”few strong actors” aspect of oligopical
competition. In essence, each level’s internal dynamics can be seen as a small committee of
factors that must negotiate with each other (space vs. thought vs. time considerations) to
produce that level’s outcome. The parameter w, controlled the degree of this negotiation,
reaching near-total synergy at the top level. This aligns with the idea that a limited number
of considerations (or sub-agents) compete and cooperate intensely within a well-bounded
scope.

Now consider the interactions between these finite units and with the outside world. In
our framework, we did not impose a rigid top-down command structure between levels.
Instead, the different levels communicate implicitly through the shared continuum of state
fields. Each level contributes to and is influenced by the global fields S(¢, z), I(t,z), T(t, x),
which extend throughout space, time, and thought. This is analogous to a free market or
open exchange mechanism: no single level dictates the state of another, but each finds its
equilibrium through the collective medium. For instance, an improvement in the structured
state S at a low level (say, operational efficiency gained on the ground) will propagate through
the continuum equations (perhaps raising S or I at higher levels), and those higher levels
will respond accordingly through their dynamics. Conversely, a high-level surge in influence
I (say a strategic vision or directive) percolates down by altering the context (parameters
P or ¥ in the low-level S equation). All these cross-level effects happen naturally via the
PDEs and the coupling terms like P(S,t) or ¢g(S,C), without a direct authoritative link. In
essence, the levels interact indirectly but freely: they influence one another through the state
of the world, not through explicit commands. This self-organizing scheme is exactly what
IOT prescribes for non-finite (many-actor) interactions — an open marketplace of ideas and
influence rather than a strict hierarchy. Our continuum provides that marketplace: it is a
space where any number of agents or levels can push and pull on the state variables, and
the net effect emerges from their aggregate contributions.

The phrase "the individual is a monopoly” in IOT underlines that at the smallest scale,
an agent has complete autonomy (monopoly) over its own immediate actions. We see a
reflection of this in our model at Level 1: with w; very low, each component of the dynamic
(each dimension) was almost uncoupled, essentially acting on its own. One could interpret
that as each basic actor or factor operating in isolation when zoomed in very closely, which
matches the idea that an individual controls itself like a sole proprietor. As we move up the
levels, more interaction appears — corresponding to group contexts where no one member
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has absolute autonomy but must work with a few others (oligopoly).

Combining these insights, our theory provides a formal underpinning for how an ideal
organization can leverage structure to amplify intelligence. Internally, having a finite number
of levels (or domains) with strong integration at each level ensures that within any given
domain, information is richly shared and processed from multiple perspectives (spatial, tem-
poral, cognitive). Externally (or cross-domain), allowing free interaction via the continuum
ensures adaptability and creativity, as no artificial constraints choke off the flow of infor-
mation or influence between parts of the system. The covariant coupling we introduced in
Section 5 is crucial here: it guarantees that when different parts of the system exchange
information, they do so in a consistent way (adjusting for biases and scale differences). This
means the whole system can truly function as a coherent intelligence, rather than a disjointed
set of siloed units.

In an Al context, these principles suggest that a multi-agent or multi-module Al system
organized in this fashion could achieve super-additive collective intelligence. By ”super-
additive,” we mean that the performance or problem-solving capability of the whole exceeds
the sum of what the agents could do working in isolation. In our model, super-additivity is
enabled by the synergy at higher levels (e.g., the fully integrated J(ws) matrix indicating that
the three fundamental dimensions are acting in concert) and by the seamless propagation of
improvements across the system. If one module discovers a partial solution or insight (an
increase in [ or T locally), that benefit spreads to others through the continuum (raising
I or S elsewhere, thanks to terms like 3(7,¢) or the diffusion of influence). Likewise, any
module can draw on the global pool of structured knowledge S and ongoing transformations
T to inform its local decisions. The result is an emergent collective capability that is more
than just the modules working independently. Our fiber-bundle formulation even quantifies
the extent of this "more-than-sum” effect: the curvature associated with biases must be
managed (too much bias curvature could hinder collective performance), but when managed
(minimized or compensated by the connection), the remaining integrated structure yields a
net positive gain in overall output.

In summary, the CSTT continuum with its multi-level Jacobian and bias corrections
provides a blueprint for an ideal cognitive organization. A system structured in accordance
with IOT — small, well-integrated clusters internally, free information flow externally — nat-
urally achieves a high level of collective intelligence. Our theoretical Revision 3 not only
qualitatively aligns with these organizational ideals but also offers a quantitative language
(differential equations, Jacobians, and curvature) to describe how and why such a structure
is advantageous. This lays a foundation for designing future intelligent systems (be they hu-
man organizations or Al networks) that harness oligopical internal design and open external
interaction to achieve superadditive outcomes.

7 Conclusion

In this work, we have presented ”A Theory of the Universe: Revision 3,” a comprehensive
theoretical framework that extends and refines earlier versions to integrate game-theoretic
equilibrium concepts, advanced geometric modeling, and organizational principles. The
CSTT continuum model brings together physical, informational, and cognitive dynamics
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in a unified set of differential equations, and in Rev 3 we formally embedded a utility-driven
perspective by showing that the steady-states of these equations correspond to Nash equilib-
ria in which each agent’s influence aligns with actual structure. We expanded the multi-level
Jacobian representation by including cognitive bias adjustments (modeling the Dunning—
Kruger effect) and demonstrated how these biases can be understood as geometric curvature
in a fiber-bundle formulation. Each functional level was treated as a fiber in a bundle (with
its own local linearized dynamics), and we constructed compound bundles (OPS, ARCH,
INNOV, POW) to analyze broader functional domains. By introducing a covariant deriva-
tive (connection) on this bundle, we ensured that integrations and interactions across levels
and dimensions remain consistent despite varying coupling strengths and biases.

Through this formalism, we illustrated how an ideal organization of the system emerges:
finite, oligopically-structured internal units (the functional levels or domains) interact with-
out restraint via the continuum fields, achieving a self-organizing equilibrium. This structure
was shown to induce super-additive collective behavior, wherein the integrated system ex-
hibits intelligence and adaptability beyond the sum of its parts. In particular, the synergy
at higher levels and the free flow of influence across the continuum enable a form of collec-
tive cognition that aligns with Ideal Organizational Theory and offers insights for building
intelligent multi-agent systems.

The developments in Rev 3 contribute a more rigorous and extensive foundation to the
theory. We formalized the notion of equilibrium (embedded utility and Nash equilibrium)
within the continuum, added mathematical detail to the role of biases (bias terms in the
Jacobian and their interpretation as connection curvature), and bridged the theory to prac-
tical organizational design principles. The result is a self-consistent theoretical edifice that
spans from low-level dynamical equations to high-level organizational insights.

Future work can apply this framework to empirical case studies or simulations, for in-
stance, testing how varying the coupling parameters w,, or bias magnitudes A(w,) affects
overall system performance. Additionally, the theory may guide the architecture of hybrid
human-Al teams or fully artificial intelligent networks, suggesting how to layer and connect
modules for optimal collective performance. While our ”Theory of the Universe” operates
at an abstract, system-theoretic level, its implications are tangible: by understanding the
geometry of cognition and organization, we inch closer to deliberately engineering systems
that learn, evolve, and collaborate as effectively as the ideal outlined in theory.
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