зеркало из
https://github.com/iharh/notes.git
synced 2025-10-30 21:26:09 +02:00
m
Этот коммит содержится в:
родитель
eb61faccdb
Коммит
2ed916d51f
@ -1,3 +1,6 @@
|
||||
2024
|
||||
TaylorBlum - 2024 - SQL All-in-One For Dummies 4th ed
|
||||
317D36A82E28CE96E9DFBB9CCEDAA1E4
|
||||
2023
|
||||
Wade - Mastering SQL Joins
|
||||
649006BE60C1184DDD53823D80A2956C
|
||||
|
||||
3
nontech/politics/countries/by/shpakovskiy.txt
Обычный файл
3
nontech/politics/countries/by/shpakovskiy.txt
Обычный файл
@ -0,0 +1,3 @@
|
||||
2024
|
||||
MamikinsTV - Shpakovskiy - Strong BY of 40:50
|
||||
https://www.youtube.com/watch?v=ha8tZeQXKxw
|
||||
@ -10,6 +10,10 @@ Soros - Crisis of the World Capitalism (later renounciated it)
|
||||
MichaelTellbot - Golographics Universe
|
||||
|
||||
2024
|
||||
GennadyM - TON and NOT Secrets of 1:26:41
|
||||
https://www.youtube.com/watch?v=L0m-ukggvRw
|
||||
USLawAndOrder - Dudnik - GennadyM - 06.30 of 1:01:01
|
||||
https://www.youtube.com/watch?v=BoafKAKkUac
|
||||
GennadyM - MosStockExchange of 1:38:30
|
||||
https://www.youtube.com/watch?v=4cUnX8JaWIQ
|
||||
! 4 mos-excange private brokers-speculants
|
||||
|
||||
@ -6,6 +6,8 @@ https://github.com/fiatjaf/jiq
|
||||
tui stuff
|
||||
https://github.com/noahgorstein/jqp
|
||||
|
||||
2024
|
||||
https://medium.com/@buczynski.rafal/exploring-jq-a-guide-to-essential-techniques-and-tools-for-professionals-b9df9db490de
|
||||
2022
|
||||
https://ente.io/blog/tech/jq-diff/
|
||||
2021
|
||||
|
||||
11
pl/cross/tools/quality/test/bdd/gherkin/docs/articles.txt
Обычный файл
11
pl/cross/tools/quality/test/bdd/gherkin/docs/articles.txt
Обычный файл
@ -0,0 +1,11 @@
|
||||
2024
|
||||
https://medium.com/@buczynski.rafal/gherkin-in-testing-a-beginners-guide-f2e179d5e2df
|
||||
https://selleo.com/blog/how-to-start-writing-gherkin-test-scenarios
|
||||
https://hapy.co/journal/gherkin-language/
|
||||
2023
|
||||
https://foxminded.ua/ru/gherkin-chto-eto/
|
||||
https://support.smartbear.com/cucumberstudio/docs/bdd/write-gherkin-scenarios.html
|
||||
2020
|
||||
https://www.software-testing.ru/library/testing/testing-tools/3245-writing-good-gherkin-enables-good-test-automation
|
||||
2016
|
||||
https://habr.com/ru/articles/275013/
|
||||
@ -0,0 +1,7 @@
|
||||
2023
|
||||
SQAAnalystTechwriterDays - Povelov - Quick Start in Gherkin for Manual QA 0:00 of 40:28
|
||||
https://www.youtube.com/watch?v=w4CrhyWWwzk
|
||||
2022
|
||||
LitheSpeed - Better Gherkin: Common pitfalls and how to overcome them 0:00 of 38:04
|
||||
https://www.youtube.com/watch?v=ci578UHQsIs
|
||||
https://smartiqa.ru/blog/bdd_gherkin_cucumber
|
||||
13
pl/cross/tools/quality/test/bdd/gherkin/gherkin.txt
Обычный файл
13
pl/cross/tools/quality/test/bdd/gherkin/gherkin.txt
Обычный файл
@ -0,0 +1,13 @@
|
||||
https://github.com/cucumber/gherkin
|
||||
https://github.com/cucumber/gherkin/tree/main/java
|
||||
|
||||
at vpn
|
||||
https://cucumber.io/docs/gherkin/
|
||||
https://cucumber.io/docs/gherkin/reference/
|
||||
|
||||
https://www.gherkinuft.com/gherkin/
|
||||
https://wellbehaved.readthedocs.io/Gherkin.html
|
||||
https://specflow.org/learn/gherkin/
|
||||
https://behat.org/en/latest/user_guide/gherkin.html
|
||||
https://www.spekframework.org/gherkin/
|
||||
https://jignect.tech/understanding-the-bdd-gherkin-language-main-rules-for-bdd-ui-scenarios/
|
||||
@ -0,0 +1 @@
|
||||
https://plugins.jetbrains.com/plugin/9164-gherkin
|
||||
8
pl/cross/tools/quality/test/contract/specmatic.txt
Обычный файл
8
pl/cross/tools/quality/test/contract/specmatic.txt
Обычный файл
@ -0,0 +1,8 @@
|
||||
https://specmatic.in/
|
||||
https://specmatic.in/pricing/
|
||||
|
||||
https://github.com/znsio/specmatic
|
||||
|
||||
https://specmatic.in/getting_started.html
|
||||
https://specmatic.in/documentation/contract_tests.html
|
||||
https://specmatic.in/documentation/language.html
|
||||
@ -3,6 +3,15 @@ runtime("org.springframework.boot:spring-boot-properties-migrator")
|
||||
3.x
|
||||
[VDBUH2024] - Josh Long - Bootiful Spring Boot 3.x 20:00 of 58:09
|
||||
https://www.youtube.com/watch?v=3SiYK0BWr0M
|
||||
@SpringBootApplication
|
||||
public class ServiceApplication {
|
||||
...
|
||||
@Bean
|
||||
RouterFunction<ServerResponse> routerFunction() {
|
||||
return route().GET("customers", null)
|
||||
.build();
|
||||
}
|
||||
}
|
||||
JavaTechie - Spring Boot 3.2 With Virtual Threads Explained 0:00 of 22:22
|
||||
https://www.youtube.com/watch?v=9dUPPHREF7w
|
||||
Lviv JavaClub - [Event 302] Spring boot news by Ihor Didyk 0:00 of 47:37
|
||||
|
||||
@ -5,6 +5,8 @@ https://github.com/JetBrains/spek
|
||||
|
||||
https://bintray.com/jetbrains/spek/spek
|
||||
|
||||
https://www.spekframework.org/gherkin/
|
||||
|
||||
articles
|
||||
2021
|
||||
https://www.baeldung.com/kotlin/spek
|
||||
|
||||
33
science/ai/prompt/parameters.txt
Обычный файл
33
science/ai/prompt/parameters.txt
Обычный файл
@ -0,0 +1,33 @@
|
||||
Employing advanced prompt parameters enables prompt engineers to achieve, among others, several objectives:
|
||||
Control response length and stop sequence
|
||||
Define the underlying model
|
||||
Manage the Creativity Level
|
||||
Control frequency and presence penalties
|
||||
Inject start and restart text
|
||||
|
||||
The "temperature [0 to 1]" is a parameter that controls the creativity and randomness of the model's output.
|
||||
A higher temperature (e.g., 1.0) makes the output more diverse and creative, while a lower temperature (e.g., 0.1) makes the output more focused and deterministic.
|
||||
|
||||
|
||||
The "top_p [0-1]" (also known as nucleus sampling) dictates the scope of randomness for the language model.
|
||||
It determines how many random results the model should consider based on the temperature setting.
|
||||
|
||||
The "stop_sequences [list of strings]" is a list of strings or tokens that, when encountered by the model, will cause it to stop generating further text.
|
||||
This helps control the length and structure of the generated content, preventing the model from producing unwanted text beyond the specified stopping point.
|
||||
|
||||
The "frequency_penalty [-2 to 2]" parameter reduces the likelihood of the model repeating the same line verbatim by assigning a penalty to more frequent tokens.
|
||||
A positive frequency penalty (e.g., 1.0) discourages the model from repeating tokens that appear frequently in the input, while a negative frequency penalty (e.g., -1.0)
|
||||
encourages the model to repeat such tokens.
|
||||
|
||||
The "presence_penalty [-2 to 2]" parameter increases the chances of the model discussing new topics by penalizing tokens already present in the input.
|
||||
A positive presence penalty (e.g., 1.0) discourages the model from using tokens already appearing in the input.
|
||||
In contrast, a negative presence penalty (e.g., -1.0) encourages the model to reuse tokens from the input.
|
||||
|
||||
The "best_of [positive integer]" allows you to specify the number of completions (n) that the model should generate,
|
||||
and it returns the best completion according to the model's internal evaluation.
|
||||
This is useful when obtaining the highest quality completion from different possible results.
|
||||
(n) can be an integer in the range from 1 to 20.
|
||||
|
||||
[
|
||||
{"role": "user", "content": "Write a user story for the login process.", "settings": {"temperature": 0.8, " frequency_penalty": -1}}
|
||||
]
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user