https://matplotlib.org https://github.com/matplotlib/matplotlib https://matplotlib.org/gallery.html tutorials https://matplotlib.org/tutorials/index.html https://www.datacamp.com/community/tutorials/matplotlib-tutorial-python cheatsheet https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Matplotlib_Cheat_Sheet.pdf https://github.com/donnemartin/data-science-ipython-notebooks/blob/master/matplotlib/matplotlib.ipynb axes https://matplotlib.org/api/axes_api.html https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html https://www.labri.fr/perso/nrougier/teaching/matplotlib/ xtick https://matplotlib.org/examples/ticks_and_spines/ticklabels_demo_rotation.html https://stackoverflow.com/questions/26358200/xticks-by-pandas-plot-rename-with-the-string https://jakevdp.github.io/PythonDataScienceHandbook/04.10-customizing-ticks.html ticker https://matplotlib.org/api/ticker_api.html formatter https://matplotlib.org/gallery/api/date_index_formatter.html https://matplotlib.org/gallery/ticks_and_spines/date_index_formatter.html plotting categorical https://matplotlib.org/gallery/lines_bars_and_markers/categorical_variables.html import matplotlib.pyplot as plt data = {'apples': 10, 'lemons': 5, 'limes': 20, 'oranges': 15} names = list(data.keys()) values = list(data.values()) %mathplotlib inline plt.plot(names, values) subplots https://pandas.pydata.org/pandas-docs/stable/visualization.html#subplots defaults import matplotlib.pyplot as plt print(plt.rcParams) # to examine all values print(plt.rcParams.get('figure.figsize')