https://github.com/monsta-hd/boltzmann-machines from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 28*28 = 784 pixels (55000 samples) mnist.train mnist.train.images mnist.train.labels [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - one-hot vector for number 3 mnist.test mnist.validate import tensorflow as tf x = tf.placeholder(tf.float32, [None, 784]) # use arbitrary number of 784-dim vectors for learning W = tf.Variable(tf.zeros[784, 10]) # matrix for mult-n b = tf.Variable(tf.zeros[10]) # bias vector (to add) y = tf.nn.softmax(tf.matmul(x, W) + b) y_ = tf.placeholder(tf.float32, [None, 10]) # stub-function cross_entropy = tf.reduce_mean( -tf.reduce_sum(y_ * tf.log(y), reduction_idices=[1]))