зеркало из
				https://github.com/iharh/notes.git
				synced 2025-10-31 13:46:08 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			27 строки
		
	
	
		
			885 B
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			27 строки
		
	
	
		
			885 B
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| https://github.com/monsta-hd/boltzmann-machines
 | |
| 
 | |
| from tensorflow.examples.tutorials.mnist import input_data
 | |
| mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 | |
| 
 | |
|     28*28 = 784 pixels (55000 samples)
 | |
|     mnist.train
 | |
|         mnist.train.images
 | |
|         mnist.train.labels
 | |
|             [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - one-hot vector for number 3
 | |
|     mnist.test
 | |
|     mnist.validate
 | |
| 
 | |
|     import tensorflow as tf
 | |
| 
 | |
|     x = tf.placeholder(tf.float32, [None, 784])     # use arbitrary number of 784-dim vectors for learning
 | |
| 
 | |
|     W = tf.Variable(tf.zeros[784, 10])              # matrix for mult-n
 | |
|     b = tf.Variable(tf.zeros[10])                   # bias vector (to add)
 | |
| 
 | |
|     y = tf.nn.softmax(tf.matmul(x, W) + b)
 | |
| 
 | |
|     y_ = tf.placeholder(tf.float32, [None, 10])     # stub-function
 | |
| 
 | |
|     cross_entropy = tf.reduce_mean(
 | |
|         -tf.reduce_sum(y_ * tf.log(y), reduction_idices=[1]))
 | 
