ihar_hancharenka 9bc52672f9 m
2025-08-12 17:52:17 +03:00

27 строки
885 B
Plaintext

https://github.com/monsta-hd/boltzmann-machines
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
28*28 = 784 pixels (55000 samples)
mnist.train
mnist.train.images
mnist.train.labels
[0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - one-hot vector for number 3
mnist.test
mnist.validate
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784]) # use arbitrary number of 784-dim vectors for learning
W = tf.Variable(tf.zeros[784, 10]) # matrix for mult-n
b = tf.Variable(tf.zeros[10]) # bias vector (to add)
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10]) # stub-function
cross_entropy = tf.reduce_mean(
-tf.reduce_sum(y_ * tf.log(y), reduction_idices=[1]))