зеркало из
				https://github.com/iharh/notes.git
				synced 2025-11-04 07:36:08 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			27 строки
		
	
	
		
			885 B
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			27 строки
		
	
	
		
			885 B
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
https://github.com/monsta-hd/boltzmann-machines
 | 
						|
 | 
						|
from tensorflow.examples.tutorials.mnist import input_data
 | 
						|
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
 | 
						|
 | 
						|
    28*28 = 784 pixels (55000 samples)
 | 
						|
    mnist.train
 | 
						|
        mnist.train.images
 | 
						|
        mnist.train.labels
 | 
						|
            [0, 0, 0, 1, 0, 0, 0, 0, 0, 0] - one-hot vector for number 3
 | 
						|
    mnist.test
 | 
						|
    mnist.validate
 | 
						|
 | 
						|
    import tensorflow as tf
 | 
						|
 | 
						|
    x = tf.placeholder(tf.float32, [None, 784])     # use arbitrary number of 784-dim vectors for learning
 | 
						|
 | 
						|
    W = tf.Variable(tf.zeros[784, 10])              # matrix for mult-n
 | 
						|
    b = tf.Variable(tf.zeros[10])                   # bias vector (to add)
 | 
						|
 | 
						|
    y = tf.nn.softmax(tf.matmul(x, W) + b)
 | 
						|
 | 
						|
    y_ = tf.placeholder(tf.float32, [None, 10])     # stub-function
 | 
						|
 | 
						|
    cross_entropy = tf.reduce_mean(
 | 
						|
        -tf.reduce_sum(y_ * tf.log(y), reduction_idices=[1]))
 |