rename misinformation to ammico

Этот коммит содержится в:
Petr Andriushchenko 2023-04-24 17:03:58 +02:00
родитель fae982bc8b
Коммит 622ba40964
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4C4A5DCF634115B6
70 изменённых файлов: 111 добавлений и 103 удалений

Просмотреть файл

@ -26,4 +26,4 @@ ENV GOOGLE_APPLICATION_CREDENTIALS=credentials.json
RUN echo ${GOOGLE_CREDS} > $GOOGLE_APPLICATION_CREDENTIALS
# Bundle the pre-built models (that are downloaded on demand) into the
# Docker image.
RUN misinformation_prefetch_models
RUN ammico_prefetch_models

Просмотреть файл

@ -1,10 +1,10 @@
# AMMICO - AI Media and Misinformation Content Analysis Tool
![License: MIT](https://img.shields.io/github/license/ssciwr/misinformation)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/ssciwr/misinformation/ci.yml?branch=main)
![codecov](https://img.shields.io/codecov/c/github/ssciwr/misinformation)
![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=ssciwr_misinformation&metric=alert_status)
![Language](https://img.shields.io/github/languages/top/ssciwr/misinformation)
![License: MIT](https://img.shields.io/github/license/ssciwr/AMMICO)
![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/ssciwr/AMMICO/ci.yml?branch=main)
![codecov](https://img.shields.io/codecov/c/github/ssciwr/AMMICO)
![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=ssciwr_ammico&metric=alert_status)
![Language](https://img.shields.io/github/languages/top/ssciwr/AMMICO)
This package extracts data from images such as social media images, and the accompanying text/text that is included in the image. The analysis can extract a very large number of features, depending on the user input.
@ -34,7 +34,7 @@ Use pre-processed image files such as social media posts with comments and proce
## Installation
The `AMMICO` package can be installed using pip: Navigate into your package folder `misinformation/` and execute
The `AMMICO` package can be installed using pip: Navigate into your package folder `ammico/` and execute
```
pip install .
```
@ -43,7 +43,7 @@ This will install the package and its dependencies locally.
## Usage
There are sample notebooks in the `misinformation/notebooks` folder for you to explore the package:
There are sample notebooks in the `notebooks` folder for you to explore the package:
1. Text extraction: Use the notebook `get-text-from-image.ipynb` to extract any text from the images. The text is directly translated into English. If the text should be further analysed, set the keyword `analyse_text` to `True` as demonstrated in the notebook.\
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/get-text-from-image.ipynb)**
Place the data files and google cloud vision API key in your google drive to access the data.

Просмотреть файл

Просмотреть файл

Просмотреть файл

Просмотреть файл

@ -1,11 +1,11 @@
import ipywidgets
from IPython.display import display
import misinformation.faces as faces
import misinformation.text as text
import misinformation.objects as objects
import ammico.faces as faces
import ammico.text as text
import ammico.objects as objects
import misinformation.summary as summary
import ammico.summary as summary
class JSONContainer:

Просмотреть файл

@ -11,8 +11,8 @@ from tensorflow.keras.preprocessing.image import img_to_array
from deepface import DeepFace
from retinaface import RetinaFace
from misinformation.utils import DownloadResource
import misinformation.utils as utils
from ammico.utils import DownloadResource
import ammico.utils as utils
DEEPFACE_PATH = ".deepface"

Просмотреть файл

@ -1,4 +1,4 @@
from misinformation.utils import AnalysisMethod
from ammico.utils import AnalysisMethod
import torch
import torch.nn.functional as Func
import requests

Просмотреть файл

@ -1,6 +1,6 @@
from misinformation.utils import AnalysisMethod
from misinformation.objects_cvlib import ObjectCVLib
from misinformation.objects_cvlib import init_default_objects
from ammico.utils import AnalysisMethod
from ammico.objects_cvlib import ObjectCVLib
from ammico.objects_cvlib import init_default_objects
class ObjectDetectorClient(AnalysisMethod):

Просмотреть файл

Просмотреть файл

@ -1,4 +1,4 @@
from misinformation.utils import AnalysisMethod
from ammico.utils import AnalysisMethod
from torch import device, cuda, no_grad
from PIL import Image
from lavis.models import load_model_and_preprocess

Просмотреть файл

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 10 MiB

После

Ширина:  |  Высота:  |  Размер: 10 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1005 KiB

После

Ширина:  |  Высота:  |  Размер: 1005 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 801 KiB

После

Ширина:  |  Высота:  |  Размер: 801 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 758 KiB

После

Ширина:  |  Высота:  |  Размер: 758 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 788 KiB

После

Ширина:  |  Высота:  |  Размер: 788 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1.4 MiB

После

Ширина:  |  Высота:  |  Размер: 1.4 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1.3 MiB

После

Ширина:  |  Высота:  |  Размер: 1.3 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1.2 MiB

После

Ширина:  |  Высота:  |  Размер: 1.2 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 58 KiB

После

Ширина:  |  Высота:  |  Размер: 58 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 37 KiB

После

Ширина:  |  Высота:  |  Размер: 37 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 42 KiB

После

Ширина:  |  Высота:  |  Размер: 42 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 307 KiB

После

Ширина:  |  Высота:  |  Размер: 307 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 1.3 MiB

После

Ширина:  |  Высота:  |  Размер: 1.3 MiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 671 KiB

После

Ширина:  |  Высота:  |  Размер: 671 KiB

Просмотреть файл

До

Ширина:  |  Высота:  |  Размер: 272 KiB

После

Ширина:  |  Высота:  |  Размер: 272 KiB

Просмотреть файл

Просмотреть файл

@ -1,4 +1,4 @@
import misinformation.cropposts as crpo
import ammico.cropposts as crpo
import numpy as np
from PIL import Image

Просмотреть файл

@ -1,10 +1,10 @@
import json
import misinformation.display as misinf_display
import ammico.display as ammico_display
def test_explore_analysis_faces(get_path):
mydict = {"IMG_2746": {"filename": get_path + "IMG_2746.png"}}
temp = misinf_display.explore_analysis(mydict, identify="faces") # noqa
temp = ammico_display.explore_analysis(mydict, identify="faces") # noqa
temp = None # noqa
with open(get_path + "example_faces.json", "r") as file:
outs = json.load(file)
@ -17,7 +17,7 @@ def test_explore_analysis_faces(get_path):
def test_explore_analysis_objects(get_path):
mydict = {"IMG_2809": {"filename": get_path + "IMG_2809.png"}}
temp = misinf_display.explore_analysis(mydict, identify="objects") # noqa
temp = ammico_display.explore_analysis(mydict, identify="objects") # noqa
temp = None # noqa
with open(get_path + "example_analysis_objects.json", "r") as file:
outs = json.load(file)

Просмотреть файл

@ -1,4 +1,4 @@
import misinformation.faces as fc
import ammico.faces as fc
import json
import pytest

Просмотреть файл

@ -3,7 +3,7 @@ import math
from PIL import Image
import numpy
from torch import device, cuda
import misinformation.multimodal_search as ms
import ammico.multimodal_search as ms
related_error = 1e-2
gpu_is_not_available = not cuda.is_available()

Просмотреть файл

@ -1,7 +1,7 @@
import json
import pytest
import misinformation.objects as ob
import misinformation.objects_cvlib as ob_cvlib
import ammico.objects as ob
import ammico.objects_cvlib as ob_cvlib
OBJECT_1 = "cell phone"
OBJECT_2 = "motorcycle"

Просмотреть файл

@ -2,7 +2,7 @@ import os
import pytest
from torch import device, cuda
from lavis.models import load_model_and_preprocess
import misinformation.summary as sm
import ammico.summary as sm
IMAGES = ["d755771b-225e-432f-802e-fb8dc850fff7.png", "IMG_2746.png"]

Просмотреть файл

@ -1,7 +1,7 @@
import os
import pytest
import spacy
import misinformation.text as tt
import ammico.text as tt
@pytest.fixture

Просмотреть файл

@ -1,6 +1,6 @@
import json
import pandas as pd
import misinformation.utils as ut
import ammico.utils as ut
def test_find_files(get_path):

Просмотреть файл

@ -5,7 +5,7 @@ from spacytextblob.spacytextblob import SpacyTextBlob
from textblob import TextBlob
from textblob import download_corpora
import io
from misinformation import utils
from ammico import utils
import grpc
import pandas as pd
from bertopic import BERTopic

Просмотреть файл

@ -9,7 +9,7 @@ class DownloadResource:
We use this as a wrapper to the pooch library. The wrapper registers
each data file and allows prefetching through the CLI entry point
misinformation_prefetch_models.
ammico_prefetch_models.
"""
# We store a list of defined resouces in a class variable, allowing
@ -24,7 +24,7 @@ class DownloadResource:
return pooch.retrieve(**self.kwargs)
def misinformation_prefetch_models():
def ammico_prefetch_models():
"""Prefetch all the download resources"""
for res in DownloadResource.resources:
res.get()

Просмотреть файл

Просмотреть файл

@ -6,7 +6,7 @@
import os
import sys
sys.path.insert(0, os.path.abspath("../../misinformation/"))
sys.path.insert(0, os.path.abspath("../../ammico/"))
# -- Project information -----------------------------------------------------

Просмотреть файл

@ -1,4 +1,4 @@
.. misinformation documentation master file, created by
.. ammico documentation master file, created by
sphinx-quickstart on Mon Dec 19 13:39:22 2022.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.

Просмотреть файл

@ -9,11 +9,12 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -25,9 +26,9 @@
},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay"
]
},
{
@ -130,7 +131,7 @@
"outputs": [],
"source": [
"for key in mydict.keys():\n",
" mydict[key] = misinformation.faces.EmotionDetector(mydict[key]).analyse_image()"
" mydict[key] = ammico.faces.EmotionDetector(mydict[key]).analyse_image()"
]
},
{

Просмотреть файл

@ -9,11 +9,12 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -25,8 +26,8 @@
},
"outputs": [],
"source": [
"import misinformation\n",
"import misinformation.multimodal_search as ms"
"import ammico\n",
"import ammico.multimodal_search as ms"
]
},
{
@ -46,7 +47,7 @@
},
"outputs": [],
"source": [
"images = misinformation.utils.find_files(\n",
"images = ammico.utils.find_files(\n",
" path=\"data/\",\n",
" limit=10,\n",
")"
@ -61,7 +62,7 @@
},
"outputs": [],
"source": [
"mydict = misinformation.utils.initialize_dict(images)"
"mydict = ammico.utils.initialize_dict(images)"
]
},
{
@ -276,8 +277,8 @@
},
"outputs": [],
"source": [
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
"df = misinformation.utils.dump_df(outdict)"
"outdict = ammico.utils.append_data_to_dict(mydict)\n",
"df = ammico.utils.dump_df(outdict)"
]
},
{

Просмотреть файл

@ -8,10 +8,11 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -22,10 +23,10 @@
},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay\n",
"import misinformation.objects as ob"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.objects as ob"
]
},
{

Просмотреть файл

@ -8,10 +8,11 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -22,9 +23,9 @@
},
"outputs": [],
"source": [
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay\n",
"import misinformation.summary as sm"
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{

Просмотреть файл

@ -26,8 +26,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -43,9 +43,9 @@
},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay"
]
},
{
@ -133,7 +133,7 @@
"outputs": [],
"source": [
"for key in mydict:\n",
" mydict[key] = misinformation.text.TextDetector(\n",
" mydict[key] = ammico.text.TextDetector(\n",
" mydict[key], analyse_text=True\n",
" ).analyse_image()"
]

2
notebooks/cropposts.ipynb сгенерированный
Просмотреть файл

@ -24,7 +24,7 @@
"metadata": {},
"outputs": [],
"source": [
"import misinformation.cropposts as crpo\n",
"import ammico.cropposts as crpo\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from PIL import Image\n",

15
notebooks/facial_expressions.ipynb сгенерированный
Просмотреть файл

@ -9,11 +9,12 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -31,8 +32,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -46,9 +47,9 @@
"metadata": {},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay"
]
},
{
@ -145,7 +146,7 @@
"outputs": [],
"source": [
"for key in mydict.keys():\n",
" mydict[key] = misinformation.faces.EmotionDetector(mydict[key]).analyse_image()"
" mydict[key] = ammico.faces.EmotionDetector(mydict[key]).analyse_image()"
]
},
{

16
notebooks/get-text-from-image.ipynb сгенерированный
Просмотреть файл

@ -24,8 +24,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -40,9 +40,9 @@
"outputs": [],
"source": [
"import os\n",
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay"
]
},
{
@ -126,7 +126,7 @@
"source": [
"for key in mydict:\n",
" print(key)\n",
" mydict[key] = misinformation.text.TextDetector(\n",
" mydict[key] = ammico.text.TextDetector(\n",
" mydict[key], analyse_text=True\n",
" ).analyse_image()"
]
@ -198,7 +198,7 @@
"outputs": [],
"source": [
"# make a list of all the text_english entries per analysed image from the mydict variable as above\n",
"topic_model, topic_df, most_frequent_topics = misinformation.text.PostprocessText(\n",
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
" mydict=mydict\n",
").analyse_topic()"
]
@ -220,7 +220,7 @@
"outputs": [],
"source": [
"input_file_path = \"data_out.csv\"\n",
"topic_model, topic_df, most_frequent_topics = misinformation.text.PostprocessText(\n",
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
" use_csv=True, csv_path=input_file_path\n",
").analyse_topic(return_topics=10)"
]

15
notebooks/image_summary.ipynb сгенерированный
Просмотреть файл

@ -8,10 +8,11 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -28,8 +29,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -44,10 +45,10 @@
},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay\n",
"import misinformation.summary as sm"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.summary as sm"
]
},
{

15
notebooks/multimodal_search.ipynb сгенерированный
Просмотреть файл

@ -9,11 +9,12 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -31,8 +32,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -48,8 +49,8 @@
},
"outputs": [],
"source": [
"import misinformation.utils as mutils\n",
"import misinformation.multimodal_search as ms"
"import ammico.utils as mutils\n",
"import ammico.multimodal_search as ms"
]
},
{
@ -373,8 +374,8 @@
},
"outputs": [],
"source": [
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
"df = misinformation.utils.dump_df(outdict)"
"outdict = ammico.utils.append_data_to_dict(mydict)\n",
"df = ammico.utils.dump_df(outdict)"
]
},
{

15
notebooks/objects_expression.ipynb сгенерированный
Просмотреть файл

@ -8,10 +8,11 @@
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
]
},
{
@ -28,8 +29,8 @@
" # update python version\n",
" # install setuptools\n",
" !pip install setuptools==61 -qqq\n",
" # install misinformation\n",
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
" # install ammico\n",
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
" # mount google drive for data and API key\n",
" from google.colab import drive\n",
"\n",
@ -42,10 +43,10 @@
"metadata": {},
"outputs": [],
"source": [
"import misinformation\n",
"from misinformation import utils as mutils\n",
"from misinformation import display as mdisplay\n",
"import misinformation.objects as ob"
"import ammico\n",
"from ammico import utils as mutils\n",
"from ammico import display as mdisplay\n",
"import ammico.objects as ob"
]
},
{

Просмотреть файл

@ -5,9 +5,9 @@ requires = [
build-backend = "setuptools.build_meta"
[project]
name = "misinformation"
name = "ammico"
version = "0.0.1"
description = "Misinformation campaign analysis"
description = "AI Media and Misinformation Content Analysis Tool"
readme = "README.md"
maintainers = [
{ name = "Inga Ulusoy", email = "ssc@iwr.uni-heidelberg.de" },
@ -55,7 +55,7 @@ dependencies = [
]
[project.scripts]
misinformation_prefetch_models = "misinformation.utils:misinformation_prefetch_models"
ammico_prefetch_models = "ammico.utils:ammico_prefetch_models"
[tool.setuptools]
packages = ["misinformation"]
packages = ["ammico"]