rename misinformation to ammico
@ -26,4 +26,4 @@ ENV GOOGLE_APPLICATION_CREDENTIALS=credentials.json
|
||||
RUN echo ${GOOGLE_CREDS} > $GOOGLE_APPLICATION_CREDENTIALS
|
||||
# Bundle the pre-built models (that are downloaded on demand) into the
|
||||
# Docker image.
|
||||
RUN misinformation_prefetch_models
|
||||
RUN ammico_prefetch_models
|
||||
|
||||
14
README.md
@ -1,10 +1,10 @@
|
||||
# AMMICO - AI Media and Misinformation Content Analysis Tool
|
||||
|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||

|
||||
|
||||
This package extracts data from images such as social media images, and the accompanying text/text that is included in the image. The analysis can extract a very large number of features, depending on the user input.
|
||||
|
||||
@ -34,7 +34,7 @@ Use pre-processed image files such as social media posts with comments and proce
|
||||
|
||||
## Installation
|
||||
|
||||
The `AMMICO` package can be installed using pip: Navigate into your package folder `misinformation/` and execute
|
||||
The `AMMICO` package can be installed using pip: Navigate into your package folder `ammico/` and execute
|
||||
```
|
||||
pip install .
|
||||
```
|
||||
@ -43,7 +43,7 @@ This will install the package and its dependencies locally.
|
||||
|
||||
## Usage
|
||||
|
||||
There are sample notebooks in the `misinformation/notebooks` folder for you to explore the package:
|
||||
There are sample notebooks in the `notebooks` folder for you to explore the package:
|
||||
1. Text extraction: Use the notebook `get-text-from-image.ipynb` to extract any text from the images. The text is directly translated into English. If the text should be further analysed, set the keyword `analyse_text` to `True` as demonstrated in the notebook.\
|
||||
**You can run this notebook on google colab: [Here](https://colab.research.google.com/github/ssciwr/misinformation/blob/main/notebooks/get-text-from-image.ipynb)**
|
||||
Place the data files and google cloud vision API key in your google drive to access the data.
|
||||
|
||||
@ -1,11 +1,11 @@
|
||||
import ipywidgets
|
||||
from IPython.display import display
|
||||
|
||||
import misinformation.faces as faces
|
||||
import misinformation.text as text
|
||||
import misinformation.objects as objects
|
||||
import ammico.faces as faces
|
||||
import ammico.text as text
|
||||
import ammico.objects as objects
|
||||
|
||||
import misinformation.summary as summary
|
||||
import ammico.summary as summary
|
||||
|
||||
|
||||
class JSONContainer:
|
||||
@ -11,8 +11,8 @@ from tensorflow.keras.preprocessing.image import img_to_array
|
||||
from deepface import DeepFace
|
||||
from retinaface import RetinaFace
|
||||
|
||||
from misinformation.utils import DownloadResource
|
||||
import misinformation.utils as utils
|
||||
from ammico.utils import DownloadResource
|
||||
import ammico.utils as utils
|
||||
|
||||
DEEPFACE_PATH = ".deepface"
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
from misinformation.utils import AnalysisMethod
|
||||
from ammico.utils import AnalysisMethod
|
||||
import torch
|
||||
import torch.nn.functional as Func
|
||||
import requests
|
||||
@ -1,6 +1,6 @@
|
||||
from misinformation.utils import AnalysisMethod
|
||||
from misinformation.objects_cvlib import ObjectCVLib
|
||||
from misinformation.objects_cvlib import init_default_objects
|
||||
from ammico.utils import AnalysisMethod
|
||||
from ammico.objects_cvlib import ObjectCVLib
|
||||
from ammico.objects_cvlib import init_default_objects
|
||||
|
||||
|
||||
class ObjectDetectorClient(AnalysisMethod):
|
||||
@ -1,4 +1,4 @@
|
||||
from misinformation.utils import AnalysisMethod
|
||||
from ammico.utils import AnalysisMethod
|
||||
from torch import device, cuda, no_grad
|
||||
from PIL import Image
|
||||
from lavis.models import load_model_and_preprocess
|
||||
|
До Ширина: | Высота: | Размер: 10 MiB После Ширина: | Высота: | Размер: 10 MiB |
|
До Ширина: | Высота: | Размер: 1005 KiB После Ширина: | Высота: | Размер: 1005 KiB |
|
До Ширина: | Высота: | Размер: 801 KiB После Ширина: | Высота: | Размер: 801 KiB |
|
До Ширина: | Высота: | Размер: 758 KiB После Ширина: | Высота: | Размер: 758 KiB |
|
До Ширина: | Высота: | Размер: 788 KiB После Ширина: | Высота: | Размер: 788 KiB |
|
До Ширина: | Высота: | Размер: 1.4 MiB После Ширина: | Высота: | Размер: 1.4 MiB |
|
До Ширина: | Высота: | Размер: 1.3 MiB После Ширина: | Высота: | Размер: 1.3 MiB |
|
До Ширина: | Высота: | Размер: 1.2 MiB После Ширина: | Высота: | Размер: 1.2 MiB |
|
До Ширина: | Высота: | Размер: 58 KiB После Ширина: | Высота: | Размер: 58 KiB |
|
До Ширина: | Высота: | Размер: 37 KiB После Ширина: | Высота: | Размер: 37 KiB |
|
До Ширина: | Высота: | Размер: 42 KiB После Ширина: | Высота: | Размер: 42 KiB |
|
До Ширина: | Высота: | Размер: 307 KiB После Ширина: | Высота: | Размер: 307 KiB |
|
До Ширина: | Высота: | Размер: 1.3 MiB После Ширина: | Высота: | Размер: 1.3 MiB |
|
До Ширина: | Высота: | Размер: 671 KiB После Ширина: | Высота: | Размер: 671 KiB |
|
До Ширина: | Высота: | Размер: 272 KiB После Ширина: | Высота: | Размер: 272 KiB |
@ -1,4 +1,4 @@
|
||||
import misinformation.cropposts as crpo
|
||||
import ammico.cropposts as crpo
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
@ -1,10 +1,10 @@
|
||||
import json
|
||||
import misinformation.display as misinf_display
|
||||
import ammico.display as ammico_display
|
||||
|
||||
|
||||
def test_explore_analysis_faces(get_path):
|
||||
mydict = {"IMG_2746": {"filename": get_path + "IMG_2746.png"}}
|
||||
temp = misinf_display.explore_analysis(mydict, identify="faces") # noqa
|
||||
temp = ammico_display.explore_analysis(mydict, identify="faces") # noqa
|
||||
temp = None # noqa
|
||||
with open(get_path + "example_faces.json", "r") as file:
|
||||
outs = json.load(file)
|
||||
@ -17,7 +17,7 @@ def test_explore_analysis_faces(get_path):
|
||||
|
||||
def test_explore_analysis_objects(get_path):
|
||||
mydict = {"IMG_2809": {"filename": get_path + "IMG_2809.png"}}
|
||||
temp = misinf_display.explore_analysis(mydict, identify="objects") # noqa
|
||||
temp = ammico_display.explore_analysis(mydict, identify="objects") # noqa
|
||||
temp = None # noqa
|
||||
with open(get_path + "example_analysis_objects.json", "r") as file:
|
||||
outs = json.load(file)
|
||||
@ -1,4 +1,4 @@
|
||||
import misinformation.faces as fc
|
||||
import ammico.faces as fc
|
||||
import json
|
||||
import pytest
|
||||
|
||||
@ -3,7 +3,7 @@ import math
|
||||
from PIL import Image
|
||||
import numpy
|
||||
from torch import device, cuda
|
||||
import misinformation.multimodal_search as ms
|
||||
import ammico.multimodal_search as ms
|
||||
|
||||
related_error = 1e-2
|
||||
gpu_is_not_available = not cuda.is_available()
|
||||
@ -1,7 +1,7 @@
|
||||
import json
|
||||
import pytest
|
||||
import misinformation.objects as ob
|
||||
import misinformation.objects_cvlib as ob_cvlib
|
||||
import ammico.objects as ob
|
||||
import ammico.objects_cvlib as ob_cvlib
|
||||
|
||||
OBJECT_1 = "cell phone"
|
||||
OBJECT_2 = "motorcycle"
|
||||
@ -2,7 +2,7 @@ import os
|
||||
import pytest
|
||||
from torch import device, cuda
|
||||
from lavis.models import load_model_and_preprocess
|
||||
import misinformation.summary as sm
|
||||
import ammico.summary as sm
|
||||
|
||||
|
||||
IMAGES = ["d755771b-225e-432f-802e-fb8dc850fff7.png", "IMG_2746.png"]
|
||||
@ -1,7 +1,7 @@
|
||||
import os
|
||||
import pytest
|
||||
import spacy
|
||||
import misinformation.text as tt
|
||||
import ammico.text as tt
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@ -1,6 +1,6 @@
|
||||
import json
|
||||
import pandas as pd
|
||||
import misinformation.utils as ut
|
||||
import ammico.utils as ut
|
||||
|
||||
|
||||
def test_find_files(get_path):
|
||||
@ -5,7 +5,7 @@ from spacytextblob.spacytextblob import SpacyTextBlob
|
||||
from textblob import TextBlob
|
||||
from textblob import download_corpora
|
||||
import io
|
||||
from misinformation import utils
|
||||
from ammico import utils
|
||||
import grpc
|
||||
import pandas as pd
|
||||
from bertopic import BERTopic
|
||||
@ -9,7 +9,7 @@ class DownloadResource:
|
||||
|
||||
We use this as a wrapper to the pooch library. The wrapper registers
|
||||
each data file and allows prefetching through the CLI entry point
|
||||
misinformation_prefetch_models.
|
||||
ammico_prefetch_models.
|
||||
"""
|
||||
|
||||
# We store a list of defined resouces in a class variable, allowing
|
||||
@ -24,7 +24,7 @@ class DownloadResource:
|
||||
return pooch.retrieve(**self.kwargs)
|
||||
|
||||
|
||||
def misinformation_prefetch_models():
|
||||
def ammico_prefetch_models():
|
||||
"""Prefetch all the download resources"""
|
||||
for res in DownloadResource.resources:
|
||||
res.get()
|
||||
@ -6,7 +6,7 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.insert(0, os.path.abspath("../../misinformation/"))
|
||||
sys.path.insert(0, os.path.abspath("../../ammico/"))
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
@ -1,4 +1,4 @@
|
||||
.. misinformation documentation master file, created by
|
||||
.. ammico documentation master file, created by
|
||||
sphinx-quickstart on Mon Dec 19 13:39:22 2022.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
@ -9,11 +9,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -25,9 +26,9 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -130,7 +131,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for key in mydict.keys():\n",
|
||||
" mydict[key] = misinformation.faces.EmotionDetector(mydict[key]).analyse_image()"
|
||||
" mydict[key] = ammico.faces.EmotionDetector(mydict[key]).analyse_image()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -9,11 +9,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -25,8 +26,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"import misinformation.multimodal_search as ms"
|
||||
"import ammico\n",
|
||||
"import ammico.multimodal_search as ms"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -46,7 +47,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"images = misinformation.utils.find_files(\n",
|
||||
"images = ammico.utils.find_files(\n",
|
||||
" path=\"data/\",\n",
|
||||
" limit=10,\n",
|
||||
")"
|
||||
@ -61,7 +62,7 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mydict = misinformation.utils.initialize_dict(images)"
|
||||
"mydict = ammico.utils.initialize_dict(images)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -276,8 +277,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
|
||||
"df = misinformation.utils.dump_df(outdict)"
|
||||
"outdict = ammico.utils.append_data_to_dict(mydict)\n",
|
||||
"df = ammico.utils.dump_df(outdict)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -8,10 +8,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -22,10 +23,10 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay\n",
|
||||
"import misinformation.objects as ob"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay\n",
|
||||
"import ammico.objects as ob"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -8,10 +8,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -22,9 +23,9 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay\n",
|
||||
"import misinformation.summary as sm"
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay\n",
|
||||
"import ammico.summary as sm"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -26,8 +26,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -43,9 +43,9 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -133,7 +133,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for key in mydict:\n",
|
||||
" mydict[key] = misinformation.text.TextDetector(\n",
|
||||
" mydict[key] = ammico.text.TextDetector(\n",
|
||||
" mydict[key], analyse_text=True\n",
|
||||
" ).analyse_image()"
|
||||
]
|
||||
|
||||
2
notebooks/cropposts.ipynb
сгенерированный
@ -24,7 +24,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation.cropposts as crpo\n",
|
||||
"import ammico.cropposts as crpo\n",
|
||||
"import numpy as np\n",
|
||||
"import matplotlib.pyplot as plt\n",
|
||||
"from PIL import Image\n",
|
||||
|
||||
15
notebooks/facial_expressions.ipynb
сгенерированный
@ -9,11 +9,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "51f8888b-d1a3-4b85-a596-95c0993fa192",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on detecting facial expressions with DeepFace. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -31,8 +32,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -46,9 +47,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -145,7 +146,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for key in mydict.keys():\n",
|
||||
" mydict[key] = misinformation.faces.EmotionDetector(mydict[key]).analyse_image()"
|
||||
" mydict[key] = ammico.faces.EmotionDetector(mydict[key]).analyse_image()"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
16
notebooks/get-text-from-image.ipynb
сгенерированный
@ -24,8 +24,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -40,9 +40,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -126,7 +126,7 @@
|
||||
"source": [
|
||||
"for key in mydict:\n",
|
||||
" print(key)\n",
|
||||
" mydict[key] = misinformation.text.TextDetector(\n",
|
||||
" mydict[key] = ammico.text.TextDetector(\n",
|
||||
" mydict[key], analyse_text=True\n",
|
||||
" ).analyse_image()"
|
||||
]
|
||||
@ -198,7 +198,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# make a list of all the text_english entries per analysed image from the mydict variable as above\n",
|
||||
"topic_model, topic_df, most_frequent_topics = misinformation.text.PostprocessText(\n",
|
||||
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
|
||||
" mydict=mydict\n",
|
||||
").analyse_topic()"
|
||||
]
|
||||
@ -220,7 +220,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"input_file_path = \"data_out.csv\"\n",
|
||||
"topic_model, topic_df, most_frequent_topics = misinformation.text.PostprocessText(\n",
|
||||
"topic_model, topic_df, most_frequent_topics = ammico.text.PostprocessText(\n",
|
||||
" use_csv=True, csv_path=input_file_path\n",
|
||||
").analyse_topic(return_topics=10)"
|
||||
]
|
||||
|
||||
15
notebooks/image_summary.ipynb
сгенерированный
@ -8,10 +8,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on Image Captioning and Visual question answering with lavis. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -28,8 +29,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -44,10 +45,10 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay\n",
|
||||
"import misinformation.summary as sm"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay\n",
|
||||
"import ammico.summary as sm"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
15
notebooks/multimodal_search.ipynb
сгенерированный
@ -9,11 +9,12 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"id": "9eeeb302-296e-48dc-86c7-254aa02f2b3a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on Image Multimodal Search with lavis library. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -31,8 +32,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -48,8 +49,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation.utils as mutils\n",
|
||||
"import misinformation.multimodal_search as ms"
|
||||
"import ammico.utils as mutils\n",
|
||||
"import ammico.multimodal_search as ms"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -373,8 +374,8 @@
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"outdict = misinformation.utils.append_data_to_dict(mydict)\n",
|
||||
"df = misinformation.utils.dump_df(outdict)"
|
||||
"outdict = ammico.utils.append_data_to_dict(mydict)\n",
|
||||
"df = ammico.utils.dump_df(outdict)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
15
notebooks/objects_expression.ipynb
сгенерированный
@ -8,10 +8,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"attachments": {},
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `misinformation` package that is imported here:"
|
||||
"This notebooks shows some preliminary work on detecting objects expressions with cvlib. It is mainly meant to explore its capabilities and to decide on future research directions. We package our code into a `ammico` package that is imported here:"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -28,8 +29,8 @@
|
||||
" # update python version\n",
|
||||
" # install setuptools\n",
|
||||
" !pip install setuptools==61 -qqq\n",
|
||||
" # install misinformation\n",
|
||||
" !pip install git+https://github.com/ssciwr/misinformation.git -qqq\n",
|
||||
" # install ammico\n",
|
||||
" !pip install git+https://github.com/ssciwr/ammico.git -qqq\n",
|
||||
" # mount google drive for data and API key\n",
|
||||
" from google.colab import drive\n",
|
||||
"\n",
|
||||
@ -42,10 +43,10 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import misinformation\n",
|
||||
"from misinformation import utils as mutils\n",
|
||||
"from misinformation import display as mdisplay\n",
|
||||
"import misinformation.objects as ob"
|
||||
"import ammico\n",
|
||||
"from ammico import utils as mutils\n",
|
||||
"from ammico import display as mdisplay\n",
|
||||
"import ammico.objects as ob"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
||||
@ -5,9 +5,9 @@ requires = [
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "misinformation"
|
||||
name = "ammico"
|
||||
version = "0.0.1"
|
||||
description = "Misinformation campaign analysis"
|
||||
description = "AI Media and Misinformation Content Analysis Tool"
|
||||
readme = "README.md"
|
||||
maintainers = [
|
||||
{ name = "Inga Ulusoy", email = "ssc@iwr.uni-heidelberg.de" },
|
||||
@ -55,7 +55,7 @@ dependencies = [
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
misinformation_prefetch_models = "misinformation.utils:misinformation_prefetch_models"
|
||||
ammico_prefetch_models = "ammico.utils:ammico_prefetch_models"
|
||||
|
||||
[tool.setuptools]
|
||||
packages = ["misinformation"]
|
||||
packages = ["ammico"]
|
||||
|
||||