зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 05:26:05 +02:00
99 строки
3.2 KiB
Python
99 строки
3.2 KiB
Python
import os
|
|
import pytest
|
|
from torch import device, cuda
|
|
from lavis.models import load_model_and_preprocess
|
|
import ammico.summary as sm
|
|
|
|
|
|
IMAGES = ["d755771b-225e-432f-802e-fb8dc850fff7.png", "IMG_2746.png"]
|
|
|
|
SUMMARY_DEVICE = device("cuda" if cuda.is_available() else "cpu")
|
|
|
|
TEST_KWARGS = {
|
|
"run1": {
|
|
"name": "blip_caption",
|
|
"model_type": "base_coco",
|
|
"is_eval": True,
|
|
"device": SUMMARY_DEVICE,
|
|
},
|
|
"run2": {
|
|
"name": "blip_caption",
|
|
"model_type": "base_coco",
|
|
"is_eval": True,
|
|
"device": SUMMARY_DEVICE,
|
|
},
|
|
"run3": {
|
|
"name": "blip_caption",
|
|
"model_type": "large_coco",
|
|
"is_eval": True,
|
|
"device": SUMMARY_DEVICE,
|
|
},
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def get_dict(get_path):
|
|
mydict = {}
|
|
for img in IMAGES:
|
|
id_ = os.path.splitext(os.path.basename(img))[0]
|
|
mydict[id_] = {"filename": get_path + img}
|
|
return mydict
|
|
|
|
|
|
@pytest.mark.long
|
|
def test_analyse_image(get_dict):
|
|
reference_results = {
|
|
"run1": {
|
|
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a city next to tall buildings",
|
|
"IMG_2746": "a crowd of people standing on top of a tennis court",
|
|
},
|
|
"run2": {
|
|
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a city next to tall buildings",
|
|
"IMG_2746": "a crowd of people standing on top of a tennis court",
|
|
},
|
|
"run3": {
|
|
"d755771b-225e-432f-802e-fb8dc850fff7": "a river running through a town next to tall buildings",
|
|
"IMG_2746": "a crowd of people standing on top of a track",
|
|
},
|
|
}
|
|
# test three different models
|
|
for test_run in TEST_KWARGS.keys():
|
|
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
|
|
**TEST_KWARGS[test_run]
|
|
)
|
|
# run two different images
|
|
for key in get_dict.keys():
|
|
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_image(
|
|
summary_model, summary_vis_processors
|
|
)
|
|
assert len(get_dict) == 2
|
|
for key in get_dict.keys():
|
|
assert len(get_dict[key]["3_non-deterministic summary"]) == 3
|
|
assert (
|
|
get_dict[key]["const_image_summary"] == reference_results[test_run][key]
|
|
)
|
|
cuda.empty_cache()
|
|
summary_model = None
|
|
summary_vis_processors = None
|
|
|
|
|
|
def test_analyse_questions(get_dict):
|
|
list_of_questions = [
|
|
"How many persons on the picture?",
|
|
"What happends on the picture?",
|
|
]
|
|
for key in get_dict:
|
|
get_dict[key] = sm.SummaryDetector(get_dict[key]).analyse_questions(
|
|
list_of_questions
|
|
)
|
|
assert len(get_dict) == 2
|
|
list_of_questions_ans = ["2", "100"]
|
|
list_of_questions_ans2 = ["flood", "festival"]
|
|
test_answers = []
|
|
test_answers2 = []
|
|
for key in get_dict.keys():
|
|
test_answers.append(get_dict[key][list_of_questions[0]])
|
|
test_answers2.append(get_dict[key][list_of_questions[1]])
|
|
assert sorted(test_answers) == sorted(list_of_questions_ans)
|
|
assert sorted(test_answers2) == sorted(list_of_questions_ans2)
|