зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 05:26:05 +02:00 
			
		
		
		
	added new models from lavis to ammico summary (#138)
* added new models from LAVIS to ammico summary * added sequential questions for summary in new models * fixed initializing dict process in all notebooks * joining old and new models into one notebook
Этот коммит содержится в:
		
							родитель
							
								
									5c72f9aae4
								
							
						
					
					
						Коммит
						8161164e87
					
				| @ -510,7 +510,7 @@ class AnalysisExplorer: | ||||
|             detector_class = identify_function( | ||||
|                 image_copy, | ||||
|                 analysis_type=setting_summary_analysis_type, | ||||
|                 summary_model_type=setting_summary_model, | ||||
|                 model_type=setting_summary_model, | ||||
|                 list_of_questions=[setting_summary_list_of_questions] | ||||
|                 if (setting_summary_list_of_questions is not None) | ||||
|                 else None, | ||||
|  | ||||
| @ -61,7 +61,7 @@ | ||||
|    "id": "a2bd2153", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "We select a subset of image files to try facial expression detection on, see the `limit` keyword. The `find_files` function finds image files within a given directory:" | ||||
|     "We select a subset of image files to try facial expression detection on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis::" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -73,31 +73,12 @@ | ||||
|    "source": [ | ||||
|     "# Here you need to provide the path to your google drive folder\n", | ||||
|     "# or local folder containing the images\n", | ||||
|     "images = ammico.find_files(\n", | ||||
|     "mydict = ammico.find_files(\n", | ||||
|     "    path=\"/content/drive/MyDrive/misinformation-data/\",\n", | ||||
|     "    limit=10,\n", | ||||
|     ")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "attachments": {}, | ||||
|    "cell_type": "markdown", | ||||
|    "id": "705e7328", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "b37c0c91", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict = ammico.initialize_dict(images)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "attachments": {}, | ||||
|    "cell_type": "markdown", | ||||
|  | ||||
| @ -64,7 +64,7 @@ | ||||
|    "id": "fddba721", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "We select a subset of image files to try the text extraction on, see the `limit` keyword. The `find_files` function finds image files within a given directory: " | ||||
|     "We select a subset of image files to try the text extraction on, see the `limit` keyword. The `find_files` function finds image files within a given directory and initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis: " | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -76,28 +76,11 @@ | ||||
|    "source": [ | ||||
|     "# Here you need to provide the path to your google drive folder\n", | ||||
|     "# or local folder containing the images\n", | ||||
|     "images = ammico.find_files(\n", | ||||
|     "mydict = ammico.find_files(\n", | ||||
|     "    path=\"/content/drive/MyDrive/misinformation-data/\",\n", | ||||
|     "    limit=10,\n", | ||||
|     ")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "id": "3a7dfe11", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "We need to initialize the main dictionary that contains all information for the images and is updated through each subsequent analysis:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "8b32409f", | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict = ammico.initialize_dict(images)" | ||||
|     ")\n", | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|  | ||||
| @ -63,21 +63,12 @@ | ||||
|    "source": [ | ||||
|     "# Here you need to provide the path to your google drive folder\n", | ||||
|     "# or local folder containing the images\n", | ||||
|     "images = ammico.find_files(\n", | ||||
|     "mydict = ammico.find_files(\n", | ||||
|     "    path=\"/content/drive/MyDrive/misinformation-data/\",\n", | ||||
|     "    limit=10,\n", | ||||
|     ")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": { | ||||
|     "tags": [] | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict = ammico.initialize_dict(images)" | ||||
|     "    #path=\"../../data/images/\",\n", | ||||
|     "    limit=2,\n", | ||||
|     ")\n", | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -112,9 +103,8 @@ | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "obj = ammico.SummaryDetector(mydict)\n", | ||||
|     "summary_model, summary_vis_processors = obj.load_model(model_type=\"base\") # here we load the base model to the memory. This can dramatically speed up the calculation process then.\n", | ||||
|     "# summary_model, summary_vis_processors = ammico.load_model(\"large\")" | ||||
|     "obj = ammico.SummaryDetector(mydict, analysis_type=\"summary\", model_type=\"base\")    # here we load the base model to the memory. This can dramatically speed up the calculation process then.\n", | ||||
|     "#obj = ammico.SummaryDetector(mydict, analysis_type=\"summary\", model_type=\"large\")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -126,12 +116,16 @@ | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = ammico.SummaryDetector(\n", | ||||
|     "        mydict[key],                                       # here we pass the dictionary containing the images\n", | ||||
|     "        analysis_type=\"summary\",                           # here we specify the type of analysis to perform (summary, questions, summary_and_questions)\n", | ||||
|     "        summary_model=summary_model,                       # here we pass the model to use for the analysis\n", | ||||
|     "        summary_vis_processors=summary_vis_processors      # here we pass the visual processors to use for the analysis\n", | ||||
|     "        ).analyse_image()" | ||||
|     "    mydict[key] = obj.analyse_image(analysis_type=\"summary\", subdict = mydict[key])" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -229,11 +223,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "(\n", | ||||
|     "    summary_vqa_model, \n", | ||||
|     "    summary_vqa_vis_processors, \n", | ||||
|     "    summary_vqa_txt_processors \n", | ||||
|     ") = obj.load_vqa_model() # here we load the VQA model to the memory. This can dramatically speed up the calculation process then.\n" | ||||
|     "obj = ammico.SummaryDetector(mydict, analysis_type=\"questions\", list_of_questions = list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -243,13 +233,16 @@ | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = ammico.SummaryDetector(\n", | ||||
|     "        mydict[key],\n", | ||||
|     "        analysis_type=\"questions\",\n", | ||||
|     "        summary_vqa_model=summary_vqa_model,\n", | ||||
|     "        summary_vqa_vis_processors=summary_vqa_vis_processors,\n", | ||||
|     "        summary_vqa_txt_processors=summary_vqa_txt_processors,         \n", | ||||
|     "        ).analyse_questions(list_of_questions)" | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"questions\", list_of_questions = list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -260,6 +253,15 @@ | ||||
|     "Or you can perform two types of analysis at a time `analysis_type=\"summary_and_questions\"`." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "obj = ammico.SummaryDetector(mydict, analysis_type=\"summary_and_questions\", model_type=\"base\", list_of_questions = list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
| @ -267,15 +269,7 @@ | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = ammico.SummaryDetector(\n", | ||||
|     "        mydict[key],\n", | ||||
|     "        analysis_type=\"summary_and_questions\",\n", | ||||
|     "        summary_model=summary_model,                   \n", | ||||
|     "        summary_vis_processors=summary_vis_processors,\n", | ||||
|     "        summary_vqa_model=summary_vqa_model,\n", | ||||
|     "        summary_vqa_vis_processors=summary_vqa_vis_processors,\n", | ||||
|     "        summary_vqa_txt_processors=summary_vqa_txt_processors,         \n", | ||||
|     "        ).analyse_questions(list_of_questions)" | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"summary_and_questions\", list_of_questions = list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -336,6 +330,230 @@ | ||||
|     "analysis_explorer = ammico.AnalysisExplorer(mydict)\n", | ||||
|     "analysis_explorer.run_server(port=8055)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "# New models\n", | ||||
|     "This is very heavy models. They requare approx 60GB of RAM and they can use 20+GB memory GPUs for acceleration." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "obj = ammico.SummaryDetector(mydict, analysis_type = \"summary_and_questions\", model_type = \"blip2_t5_caption_coco_flant5xl\", device_type= \"cpu\")\n", | ||||
|     "# list of the new models that can be used:\n", | ||||
|     "# \"blip2_t5_pretrain_flant5xxl\",\n", | ||||
|     "# \"blip2_t5_pretrain_flant5xl\",\n", | ||||
|     "# \"blip2_t5_caption_coco_flant5xl\",\n", | ||||
|     "# \"blip2_opt_pretrain_opt2.7b\",\n", | ||||
|     "# \"blip2_opt_pretrain_opt6.7b\",\n", | ||||
|     "# \"blip2_opt_caption_coco_opt2.7b\",\n", | ||||
|     "# \"blip2_opt_caption_coco_opt6.7b\",\n", | ||||
|     "\n", | ||||
|     "# You can use `pretrain_` model types for zero-shot image-to-text generation with prompts.\n", | ||||
|     "# Or you can use `caption_coco_`` model types to generate coco-style captions.\n", | ||||
|     "# `flant5` and `opt` means that the model equipped with FlanT5 and OPT LLMs respectively.\n", | ||||
|     "\n", | ||||
|     "#also you can perform all calculation on cpu if you set device_type= \"cpu\" or gpu if you set device_type= \"cuda\"" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"summary_and_questions\")\n", | ||||
|     "\n", | ||||
|     "# analysis_type can be \n", | ||||
|     "# \"summary\",\n", | ||||
|     "# \"questions\",\n", | ||||
|     "# \"summary_and_questions\"." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "You can also pass a list of questions to this cell if `analysis_type=\"summary_and_questions\"` or `analysis_type=\"questions\"`. But the format of questions has changed in new models. \n", | ||||
|     "\n", | ||||
|     "Here is an example of a list of questions:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "list_of_questions = [\n", | ||||
|     "    \"Question: Are there people in the image? Answer:\",\n", | ||||
|     "    \"Question: What is this picture about? Answer:\",\n", | ||||
|     "]" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"questions\", list_of_questions=list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "You can also pass a question with previous answers as context into this model and pass in questions like this one to get a more accurate answer:\n", | ||||
|     "\n", | ||||
|     "You can combine as many questions as you want in a single query as a list." | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "list_of_questions = [\n", | ||||
|     "    \"Question: What country is in the picture? Answer: USA. Question: Why? Answer: Because there is an American flag in the background . Question: Where it comes from? Answer:\",\n", | ||||
|     "    \"Question: Which city is this? Answer: Frankfurt. Question: why?\",\n", | ||||
|     "]" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"questions\", list_of_questions=list_of_questions)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "You can also ask sequential questions if you pass the argument `cosequential_questions=True`. This means that the answers to previous questions will be passed as context to the next question. However, this method will work a bit slower, because for each image the answers to the questions will not be calculated simultaneously, but sequentially. " | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "list_of_questions = [\n", | ||||
|     "    \"Question: Is this picture taken inside or outside? Answer:\",\n", | ||||
|     "    \"Question: Why? Answer:\",\n", | ||||
|     "]" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "for key in mydict:\n", | ||||
|     "    mydict[key] = obj.analyse_image(subdict = mydict[key], analysis_type=\"questions\", list_of_questions=list_of_questions, consequential_questions=True)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "### Convert to dataframe and write csv\n", | ||||
|     "\n", | ||||
|     "Convert the dictionary of dictionarys into a dictionary with lists:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "outdict = ammico.append_data_to_dict(mydict)\n", | ||||
|     "df = ammico.dump_df(outdict)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "Check the dataframe:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "df.head(10)" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "markdown", | ||||
|    "metadata": {}, | ||||
|    "source": [ | ||||
|     "Write the csv file:" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "df.to_csv(\"/content/drive/MyDrive/misinformation-data/data_out.csv\")" | ||||
|    ] | ||||
|   } | ||||
|  ], | ||||
|  "metadata": { | ||||
| @ -354,7 +572,7 @@ | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.11.3" | ||||
|    "version": "3.10.13" | ||||
|   }, | ||||
|   "vscode": { | ||||
|    "interpreter": { | ||||
|  | ||||
| @ -66,22 +66,11 @@ | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "images = ammico.find_files(\n", | ||||
|     "mydict = ammico.find_files(\n", | ||||
|     "    path=\"/content/drive/MyDrive/misinformation-data/\",\n", | ||||
|     "    limit=10,\n", | ||||
|     ")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "id": "adf3db21-1f8b-4d44-bbef-ef0acf4623a0", | ||||
|    "metadata": { | ||||
|     "tags": [] | ||||
|    }, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict = ammico.initialize_dict(images)" | ||||
|     ")\n", | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -497,7 +486,7 @@ | ||||
|    "name": "python", | ||||
|    "nbconvert_exporter": "python", | ||||
|    "pygments_lexer": "ipython3", | ||||
|    "version": "3.11.3" | ||||
|    "version": "3.10.13" | ||||
|   } | ||||
|  }, | ||||
|  "nbformat": 4, | ||||
|  | ||||
| @ -67,19 +67,11 @@ | ||||
|    "source": [ | ||||
|     "# Here you need to provide the path to your google drive folder\n", | ||||
|     "# or local folder containing the images\n", | ||||
|     "images = ammico.find_files(\n", | ||||
|     "mydict = ammico.find_files(\n", | ||||
|     "    path=\"/content/drive/MyDrive/misinformation-data/\",\n", | ||||
|     "    limit=10,\n", | ||||
|     ")" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|    "cell_type": "code", | ||||
|    "execution_count": null, | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "mydict = ammico.initialize_dict(images)" | ||||
|     ")\n", | ||||
|     "mydict" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
|  | ||||
| @ -2,27 +2,56 @@ from ammico.utils import AnalysisMethod | ||||
| from torch import cuda, no_grad | ||||
| from PIL import Image | ||||
| from lavis.models import load_model_and_preprocess | ||||
| from typing import Optional | ||||
| 
 | ||||
| 
 | ||||
| class SummaryDetector(AnalysisMethod): | ||||
|     allowed_model_types = [ | ||||
|         "base", | ||||
|         "large", | ||||
|     ] | ||||
|     allowed_new_model_types = [ | ||||
|         "blip2_t5_pretrain_flant5xxl", | ||||
|         "blip2_t5_pretrain_flant5xl", | ||||
|         "blip2_t5_caption_coco_flant5xl", | ||||
|         "blip2_opt_pretrain_opt2.7b", | ||||
|         "blip2_opt_pretrain_opt6.7b", | ||||
|         "blip2_opt_caption_coco_opt2.7b", | ||||
|         "blip2_opt_caption_coco_opt6.7b", | ||||
|     ] | ||||
|     all_allowed_model_types = allowed_model_types + allowed_new_model_types | ||||
|     allowed_analysis_types = ["summary", "questions", "summary_and_questions"] | ||||
| 
 | ||||
|     def __init__( | ||||
|         self, | ||||
|         subdict: dict = {}, | ||||
|         summary_model_type: str = "base", | ||||
|         model_type: str = "base", | ||||
|         analysis_type: str = "summary_and_questions", | ||||
|         list_of_questions: str = None, | ||||
|         list_of_questions: Optional[list[str]] = None, | ||||
|         summary_model=None, | ||||
|         summary_vis_processors=None, | ||||
|         summary_vqa_model=None, | ||||
|         summary_vqa_vis_processors=None, | ||||
|         summary_vqa_txt_processors=None, | ||||
|         summary_vqa_model_new=None, | ||||
|         summary_vqa_vis_processors_new=None, | ||||
|         summary_vqa_txt_processors_new=None, | ||||
|         device_type: Optional[str] = None, | ||||
|     ) -> None: | ||||
|         """ | ||||
|         SummaryDetector class for analysing images using the blip_caption model. | ||||
| 
 | ||||
|         Args: | ||||
|             subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}. | ||||
|             summary_model_type (str, optional): Type of blip_caption model to use. Can be "base" or "large". Defaults to "base". | ||||
| 
 | ||||
|             model_type (str, optional): Type of model to use. Can be "base" or "large" for blip_caption. Or can be one of the new models: | ||||
|                 "blip2_t5_pretrain_flant5xxl", | ||||
|                 "blip2_t5_pretrain_flant5xl", | ||||
|                 "blip2_t5_caption_coco_flant5xl", | ||||
|                 "blip2_opt_pretrain_opt2.7b", | ||||
|                 "blip2_opt_pretrain_opt6.7b", | ||||
|                 "blip2_opt_caption_coco_opt2.7b", | ||||
|                 "blip2_opt_caption_coco_opt6.7b". Defaults to "base". | ||||
|             analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions". | ||||
|             list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"]. | ||||
|             summary_model ([type], optional): blip_caption model. Defaults to None. | ||||
| @ -30,6 +59,9 @@ class SummaryDetector(AnalysisMethod): | ||||
|             summary_vqa_model ([type], optional): blip_vqa model. Defaults to None. | ||||
|             summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None. | ||||
|             summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None. | ||||
|             summary_vqa_model_new ([type], optional): new_vqa model. Defaults to None. | ||||
|             summary_vqa_vis_processors_new ([type], optional): Preprocessors for vqa visual inputs. Defaults to None. | ||||
|             summary_vqa_txt_processors_new ([type], optional): Preprocessors for vqa text inputs. Defaults to None. | ||||
| 
 | ||||
|         Raises: | ||||
|             ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions". | ||||
| @ -39,47 +71,67 @@ class SummaryDetector(AnalysisMethod): | ||||
|         """ | ||||
| 
 | ||||
|         super().__init__(subdict) | ||||
|         if analysis_type not in ["summary", "questions", "summary_and_questions"]: | ||||
|         # check if analysis_type is valid | ||||
|         if analysis_type not in self.allowed_analysis_types: | ||||
|             raise ValueError( | ||||
|                 "analysis_type must be one of 'summary', 'questions' or 'summary_and_questions'" | ||||
|                 "analysis_type must be one of {}".format(self.allowed_analysis_types) | ||||
|             ) | ||||
|         # check if device_type is valid | ||||
|         if device_type is None: | ||||
|             self.summary_device = "cuda" if cuda.is_available() else "cpu" | ||||
|         allowed_model_types = ["base", "large"] | ||||
|         if summary_model_type not in allowed_model_types: | ||||
|         elif device_type not in ["cuda", "cpu"]: | ||||
|             raise ValueError("device_type must be one of {}".format(["cuda", "cpu"])) | ||||
|         else: | ||||
|             self.summary_device = device_type | ||||
|         # check if model_type is valid | ||||
|         if model_type not in self.all_allowed_model_types: | ||||
|             raise ValueError( | ||||
|                 "Model type is not allowed - please select one of {}".format( | ||||
|                     allowed_model_types | ||||
|                     self.all_allowed_model_types | ||||
|                 ) | ||||
|             ) | ||||
|         self.summary_model_type = summary_model_type | ||||
|         self.model_type = model_type | ||||
|         self.analysis_type = analysis_type | ||||
|         if list_of_questions is None: | ||||
|         # check if list_of_questions is valid | ||||
|         if list_of_questions is None and model_type in self.allowed_model_types: | ||||
|             self.list_of_questions = [ | ||||
|                 "Are there people in the image?", | ||||
|                 "What is this picture about?", | ||||
|             ] | ||||
|         elif list_of_questions is None and model_type in self.allowed_new_model_types: | ||||
|             self.list_of_questions = [ | ||||
|                 "Question: Are there people in the image? Answer:", | ||||
|                 "Question: What is this picture about? Answer:", | ||||
|             ] | ||||
|         elif (not isinstance(list_of_questions, list)) or ( | ||||
|             not all(isinstance(i, str) for i in list_of_questions) | ||||
|         ): | ||||
|             raise ValueError("list_of_questions must be a list of string (questions)") | ||||
|             raise ValueError( | ||||
|                 "list_of_questions must be a list of string (questions)" | ||||
|             )  # add sequence of questions | ||||
|         else: | ||||
|             self.list_of_questions = list_of_questions | ||||
|         # load models and preprocessors | ||||
|         if ( | ||||
|             (summary_model is None) | ||||
|             model_type in self.allowed_model_types | ||||
|             and (summary_model is None) | ||||
|             and (summary_vis_processors is None) | ||||
|             and (analysis_type != "questions") | ||||
|             and (analysis_type == "summary" or analysis_type == "summary_and_questions") | ||||
|         ): | ||||
|             self.summary_model, self.summary_vis_processors = self.load_model( | ||||
|                 model_type=summary_model_type | ||||
|                 model_type=model_type | ||||
|             ) | ||||
|         else: | ||||
|             self.summary_model = summary_model | ||||
|             self.summary_vis_processors = summary_vis_processors | ||||
|         if ( | ||||
|             (summary_vqa_model is None) | ||||
|             model_type in self.allowed_model_types | ||||
|             and (summary_vqa_model is None) | ||||
|             and (summary_vqa_vis_processors is None) | ||||
|             and (summary_vqa_txt_processors is None) | ||||
|             and (analysis_type != "summary") | ||||
|             and ( | ||||
|                 analysis_type == "questions" or analysis_type == "summary_and_questions" | ||||
|             ) | ||||
|         ): | ||||
|             ( | ||||
|                 self.summary_vqa_model, | ||||
| @ -90,6 +142,21 @@ class SummaryDetector(AnalysisMethod): | ||||
|             self.summary_vqa_model = summary_vqa_model | ||||
|             self.summary_vqa_vis_processors = summary_vqa_vis_processors | ||||
|             self.summary_vqa_txt_processors = summary_vqa_txt_processors | ||||
|         if ( | ||||
|             model_type in self.allowed_new_model_types | ||||
|             and (summary_vqa_model_new is None) | ||||
|             and (summary_vqa_vis_processors_new is None) | ||||
|             and (summary_vqa_txt_processors_new is None) | ||||
|         ): | ||||
|             ( | ||||
|                 self.summary_vqa_model_new, | ||||
|                 self.summary_vqa_vis_processors_new, | ||||
|                 self.summary_vqa_txt_processors_new, | ||||
|             ) = self.load_new_model(model_type=model_type) | ||||
|         else: | ||||
|             self.summary_vqa_model_new = summary_vqa_model_new | ||||
|             self.summary_vqa_vis_processors_new = summary_vqa_vis_processors_new | ||||
|             self.summary_vqa_txt_processors_new = summary_vqa_txt_processors_new | ||||
| 
 | ||||
|     def load_model_base(self): | ||||
|         """ | ||||
| @ -98,8 +165,8 @@ class SummaryDetector(AnalysisMethod): | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             summary_model (torch.nn.Module): model. | ||||
|             summary_vis_processors (dict): preprocessors for visual inputs. | ||||
|         """ | ||||
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess( | ||||
|             name="blip_caption", | ||||
| @ -116,8 +183,8 @@ class SummaryDetector(AnalysisMethod): | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             summary_model (torch.nn.Module): model. | ||||
|             summary_vis_processors (dict): preprocessors for visual inputs. | ||||
|         """ | ||||
|         summary_model, summary_vis_processors, _ = load_model_and_preprocess( | ||||
|             name="blip_caption", | ||||
| @ -135,8 +202,8 @@ class SummaryDetector(AnalysisMethod): | ||||
|             model_type (str): type of the model. | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             summary_model (torch.nn.Module): model. | ||||
|             summary_vis_processors (dict): preprocessors for visual inputs. | ||||
|         """ | ||||
|         select_model = { | ||||
|             "base": SummaryDetector.load_model_base, | ||||
| @ -152,9 +219,9 @@ class SummaryDetector(AnalysisMethod): | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|             summary_vqa_model (torch.nn.Module): model. | ||||
|             summary_vqa_vis_processors (dict): preprocessors for visual inputs. | ||||
|             summary_vqa_txt_processors (dict): preprocessors for text inputs. | ||||
| 
 | ||||
|         """ | ||||
|         ( | ||||
| @ -169,99 +236,405 @@ class SummaryDetector(AnalysisMethod): | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def analyse_image(self): | ||||
|     def analyse_image( | ||||
|         self, | ||||
|         analysis_type: Optional[str] = None, | ||||
|         subdict: dict = None, | ||||
|         list_of_questions: Optional[list[str]] = None, | ||||
|         consequential_questions: bool = False, | ||||
|     ): | ||||
|         """ | ||||
|         Analyse image with blip_caption model. | ||||
| 
 | ||||
|         Args: | ||||
|             analysis_type (str): type of the analysis. | ||||
|             subdict (dict): dictionary with analising pictures. | ||||
|             list_of_questions (list[str]): list of questions. | ||||
|             consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models. | ||||
| 
 | ||||
|         Returns: | ||||
|             self.subdict (dict): dictionary with analysis results. | ||||
|         """ | ||||
|         if self.analysis_type == "summary_and_questions": | ||||
|             self.analyse_summary() | ||||
|             self.analyse_questions(self.list_of_questions) | ||||
|         elif self.analysis_type == "summary": | ||||
|             self.analyse_summary() | ||||
|         elif self.analysis_type == "questions": | ||||
|             self.analyse_questions(self.list_of_questions) | ||||
|         if analysis_type is None: | ||||
|             analysis_type = self.analysis_type | ||||
|         if subdict is not None: | ||||
|             self.subdict = subdict | ||||
|         if list_of_questions is not None: | ||||
|             self.list_of_questions = list_of_questions | ||||
| 
 | ||||
|         if analysis_type == "summary_and_questions": | ||||
|             if ( | ||||
|                 self.model_type in self.allowed_model_types | ||||
|                 and self.analysis_type != "summary_and_questions" | ||||
|             ):  # if model_type is not new and required model is absent | ||||
|                 if self.summary_model is None:  # load summary model if it is not loaded | ||||
|                     self.summary_model, self.summary_vis_processors = self.load_model( | ||||
|                         model_type=self.model_type | ||||
|                     ) | ||||
|                 elif ( | ||||
|                     self.summary_vqa_model is None | ||||
|                 ):  # load vqa model if it is not loaded | ||||
|                     ( | ||||
|                         self.summary_vqa_model, | ||||
|                         self.summary_vqa_vis_processors, | ||||
|                         self.summary_vqa_txt_processors, | ||||
|                     ) = self.load_vqa_model() | ||||
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis | ||||
|             self.analyse_summary(nondeterministic_summaries=True) | ||||
|             self.analyse_questions(self.list_of_questions, consequential_questions) | ||||
|         elif analysis_type == "summary": | ||||
|             if ( | ||||
|                 (self.model_type in self.allowed_model_types) | ||||
|                 and (self.analysis_type == "questions") | ||||
|                 and (self.summary_model is None) | ||||
|             ):  # if model_type is not new and required model is absent | ||||
|                 ( | ||||
|                     self.summary_model, | ||||
|                     self.summary_vis_processors, | ||||
|                 ) = self.load_model(  # load summary model if it is not loaded | ||||
|                     model_type=self.model_type | ||||
|                 ) | ||||
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis | ||||
|             self.analyse_summary(nondeterministic_summaries=True) | ||||
|         elif analysis_type == "questions": | ||||
|             if ( | ||||
|                 (self.model_type in self.allowed_model_types) | ||||
|                 and (self.analysis_type == "summary") | ||||
|                 and (self.summary_vqa_model is None) | ||||
|             ):  # if model_type is not new and required model is absent | ||||
|                 ( | ||||
|                     self.summary_vqa_model,  # load vqa model if it is not loaded | ||||
|                     self.summary_vqa_vis_processors, | ||||
|                     self.summary_vqa_txt_processors, | ||||
|                 ) = self.load_vqa_model() | ||||
|                 self.analysis_type = "summary_and_questions"  # now all models are loaded, so you can perform any analysis | ||||
|             self.analyse_questions(self.list_of_questions, consequential_questions) | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "analysis_type must be one of {}".format(self.allowed_analysis_types) | ||||
|             ) | ||||
|         return self.subdict | ||||
| 
 | ||||
|     def analyse_summary(self): | ||||
|     def analyse_summary(self, nondeterministic_summaries: bool = True): | ||||
|         """ | ||||
|         Create 1 constant and 3 non deterministic captions for image. | ||||
| 
 | ||||
|         Args: | ||||
|             nondeterministic_summaries (bool): whether to create 3 non deterministic captions. | ||||
| 
 | ||||
|         Returns: | ||||
|             self.subdict (dict): dictionary with analysis results. | ||||
|         """ | ||||
| 
 | ||||
|         if self.model_type in self.allowed_model_types: | ||||
|             vis_processors = self.summary_vis_processors | ||||
|             model = self.summary_model | ||||
|         elif self.model_type in self.allowed_new_model_types: | ||||
|             vis_processors = self.summary_vqa_vis_processors_new | ||||
|             model = self.summary_vqa_model_new | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "Model type is not allowed - please select one of {}".format( | ||||
|                     self.all_allowed_model_types | ||||
|                 ) | ||||
|             ) | ||||
|         path = self.subdict["filename"] | ||||
|         raw_image = Image.open(path).convert("RGB") | ||||
|         image = ( | ||||
|             self.summary_vis_processors["eval"](raw_image) | ||||
|             .unsqueeze(0) | ||||
|             .to(self.summary_device) | ||||
|         ) | ||||
|         image = vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device) | ||||
|         with no_grad(): | ||||
|             self.subdict["const_image_summary"] = self.summary_model.generate( | ||||
|                 {"image": image} | ||||
|             )[0] | ||||
|             self.subdict["3_non-deterministic summary"] = self.summary_model.generate( | ||||
|             self.subdict["const_image_summary"] = model.generate({"image": image})[0] | ||||
|             if nondeterministic_summaries: | ||||
|                 self.subdict["3_non-deterministic summary"] = model.generate( | ||||
|                     {"image": image}, use_nucleus_sampling=True, num_captions=3 | ||||
|                 ) | ||||
|         return self.subdict | ||||
| 
 | ||||
|     def analyse_questions(self, list_of_questions: list[str]) -> dict: | ||||
|     def analyse_questions( | ||||
|         self, list_of_questions: list[str], consequential_questions: bool = False | ||||
|     ) -> dict: | ||||
|         """ | ||||
|         Generate answers to free-form questions about image written in natural language. | ||||
| 
 | ||||
|         Args: | ||||
|             list_of_questions (list[str]): list of questions. | ||||
|             consequential_questions (bool): whether to ask consequential questions. Works only for new BLIP2 models. | ||||
| 
 | ||||
|         Returns: | ||||
|             self.subdict (dict): dictionary with answers to questions. | ||||
|         """ | ||||
|         if ( | ||||
|             (self.summary_vqa_model is None) | ||||
|             and (self.summary_vqa_vis_processors is None) | ||||
|             and (self.summary_vqa_txt_processors is None) | ||||
|         ): | ||||
|             ( | ||||
|                 self.summary_vqa_model, | ||||
|                 self.summary_vqa_vis_processors, | ||||
|                 self.summary_vqa_txt_processors, | ||||
|             ) = load_model_and_preprocess( | ||||
|                 name="blip_vqa", | ||||
|                 model_type="vqav2", | ||||
|                 is_eval=True, | ||||
|                 device=self.summary_device, | ||||
|             ) | ||||
|         model, vis_processors, txt_processors, model_old = self.check_model() | ||||
|         if len(list_of_questions) > 0: | ||||
|             path = self.subdict["filename"] | ||||
|             raw_image = Image.open(path).convert("RGB") | ||||
|             image = ( | ||||
|                 self.summary_vqa_vis_processors["eval"](raw_image) | ||||
|                 .unsqueeze(0) | ||||
|                 .to(self.summary_device) | ||||
|                 vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device) | ||||
|             ) | ||||
|             question_batch = [] | ||||
|             list_of_questions_processed = [] | ||||
| 
 | ||||
|             if model_old: | ||||
|                 for quest in list_of_questions: | ||||
|                 question_batch.append(self.summary_vqa_txt_processors["eval"](quest)) | ||||
|                     list_of_questions_processed.append(txt_processors["eval"](quest)) | ||||
|             else: | ||||
|                 for quest in list_of_questions: | ||||
|                     list_of_questions_processed.append((str)(quest)) | ||||
| 
 | ||||
|             for quest in list_of_questions_processed: | ||||
|                 question_batch.append(quest) | ||||
|             batch_size = len(list_of_questions) | ||||
|             image_batch = image.repeat(batch_size, 1, 1, 1) | ||||
| 
 | ||||
|             if not consequential_questions: | ||||
|                 with no_grad(): | ||||
|                 answers_batch = self.summary_vqa_model.predict_answers( | ||||
|                     samples={"image": image_batch, "text_input": question_batch}, | ||||
|                     if model_old: | ||||
|                         answers_batch = model.predict_answers( | ||||
|                             samples={ | ||||
|                                 "image": image_batch, | ||||
|                                 "text_input": question_batch, | ||||
|                             }, | ||||
|                             inference_method="generate", | ||||
|                         ) | ||||
|                     else: | ||||
|                         answers_batch = model.generate( | ||||
|                             {"image": image_batch, "prompt": question_batch} | ||||
|                         ) | ||||
| 
 | ||||
|                 for q, a in zip(list_of_questions, answers_batch): | ||||
|                     self.subdict[q] = a | ||||
| 
 | ||||
|             if consequential_questions and not model_old: | ||||
|                 query_with_context = "" | ||||
|                 for quest in question_batch: | ||||
|                     query_with_context = query_with_context + quest | ||||
|                     with no_grad(): | ||||
|                         answer = model.generate( | ||||
|                             {"image": image, "prompt": query_with_context} | ||||
|                         ) | ||||
|                     self.subdict[query_with_context] = answer[0] | ||||
|                     query_with_context = query_with_context + " " + answer[0] + ". " | ||||
|             elif consequential_questions and model_old: | ||||
|                 raise ValueError( | ||||
|                     "Consequential questions are not allowed for old models" | ||||
|                 ) | ||||
|         else: | ||||
|             print("Please, enter list of questions") | ||||
|         return self.subdict | ||||
| 
 | ||||
|     def check_model(self): | ||||
|         """ | ||||
|         Check model type and return appropriate model and preprocessors. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (nn.Module): model. | ||||
|             vis_processors (dict): visual preprocessor. | ||||
|             txt_processors (dict): text preprocessor. | ||||
|             model_old (bool): whether model is old or new. | ||||
|         """ | ||||
|         if self.model_type in self.allowed_model_types: | ||||
|             vis_processors = self.summary_vqa_vis_processors | ||||
|             model = self.summary_vqa_model | ||||
|             txt_processors = self.summary_vqa_txt_processors | ||||
|             model_old = True | ||||
|         elif self.model_type in self.allowed_new_model_types: | ||||
|             vis_processors = self.summary_vqa_vis_processors_new | ||||
|             model = self.summary_vqa_model_new | ||||
|             txt_processors = self.summary_vqa_txt_processors_new | ||||
|             model_old = False | ||||
|         else: | ||||
|             raise ValueError( | ||||
|                 "Model type is not allowed - please select one of {}".format( | ||||
|                     self.all_allowed_model_types | ||||
|                 ) | ||||
|             ) | ||||
| 
 | ||||
|         return model, vis_processors, txt_processors, model_old | ||||
| 
 | ||||
|     def load_new_model(self, model_type: str): | ||||
|         """ | ||||
|         Load new BLIP2 models. | ||||
| 
 | ||||
|         Args: | ||||
|             model_type (str): type of the model. | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         select_model = { | ||||
|             "blip2_t5_pretrain_flant5xxl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xxl, | ||||
|             "blip2_t5_pretrain_flant5xl": SummaryDetector.load_model_blip2_t5_pretrain_flant5xl, | ||||
|             "blip2_t5_caption_coco_flant5xl": SummaryDetector.load_model_blip2_t5_caption_coco_flant5xl, | ||||
|             "blip2_opt_pretrain_opt2.7b": SummaryDetector.load_model_blip2_opt_pretrain_opt27b, | ||||
|             "blip2_opt_pretrain_opt6.7b": SummaryDetector.load_model_base_blip2_opt_pretrain_opt67b, | ||||
|             "blip2_opt_caption_coco_opt2.7b": SummaryDetector.load_model_blip2_opt_caption_coco_opt27b, | ||||
|             "blip2_opt_caption_coco_opt6.7b": SummaryDetector.load_model_base_blip2_opt_caption_coco_opt67b, | ||||
|         } | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = select_model[model_type](self) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_blip2_t5_pretrain_flant5xxl(self): | ||||
|         """ | ||||
|         Load BLIP2 model with FLAN-T5 XXL architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_t5", | ||||
|             model_type="pretrain_flant5xxl", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_blip2_t5_pretrain_flant5xl(self): | ||||
|         """ | ||||
|         Load BLIP2 model with FLAN-T5 XL architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_t5", | ||||
|             model_type="pretrain_flant5xl", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_blip2_t5_caption_coco_flant5xl(self): | ||||
|         """ | ||||
|         Load BLIP2 model with caption_coco_flant5xl architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_t5", | ||||
|             model_type="caption_coco_flant5xl", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_blip2_opt_pretrain_opt27b(self): | ||||
|         """ | ||||
|         Load BLIP2 model with pretrain_opt2 architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_opt", | ||||
|             model_type="pretrain_opt2.7b", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_base_blip2_opt_pretrain_opt67b(self): | ||||
|         """ | ||||
|         Load BLIP2 model with pretrain_opt6.7b architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_opt", | ||||
|             model_type="pretrain_opt6.7b", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_blip2_opt_caption_coco_opt27b(self): | ||||
|         """ | ||||
|         Load BLIP2 model with caption_coco_opt2.7b architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_opt", | ||||
|             model_type="caption_coco_opt2.7b", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
| 
 | ||||
|     def load_model_base_blip2_opt_caption_coco_opt67b(self): | ||||
|         """ | ||||
|         Load BLIP2 model with caption_coco_opt6.7b architecture. | ||||
| 
 | ||||
|         Args: | ||||
| 
 | ||||
|         Returns: | ||||
|             model (torch.nn.Module): model. | ||||
|             vis_processors (dict): preprocessors for visual inputs. | ||||
|             txt_processors (dict): preprocessors for text inputs. | ||||
|         """ | ||||
|         ( | ||||
|             summary_vqa_model, | ||||
|             summary_vqa_vis_processors, | ||||
|             summary_vqa_txt_processors, | ||||
|         ) = load_model_and_preprocess( | ||||
|             name="blip2_opt", | ||||
|             model_type="caption_coco_opt6.7b", | ||||
|             is_eval=True, | ||||
|             device=self.summary_device, | ||||
|         ) | ||||
|         return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors | ||||
|  | ||||
| @ -125,11 +125,11 @@ def test_advanced_init_summary(): | ||||
|     sd = sm.SummaryDetector({}) | ||||
|     assert sd.summary_model | ||||
|     assert sd.summary_vis_processors | ||||
|     sd = sm.SummaryDetector({}, summary_model_type="large") | ||||
|     sd = sm.SummaryDetector({}, model_type="large") | ||||
|     assert sd.summary_model | ||||
|     assert sd.summary_vis_processors | ||||
|     with pytest.raises(ValueError): | ||||
|         sm.SummaryDetector({}, summary_model_type="bla") | ||||
|         sm.SummaryDetector({}, model_type="bla") | ||||
|     ( | ||||
|         summary_vqa_model, | ||||
|         summary_vqa_vis_processors, | ||||
|  | ||||
		Загрузка…
	
	
			
			x
			
			
		
	
		Ссылка в новой задаче
	
	Block a user
	 Petr Andriushchenko
						Petr Andriushchenko