зеркало из
				https://github.com/ssciwr/AMMICO.git
				synced 2025-10-30 13:36:04 +02:00 
			
		
		
		
	[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Этот коммит содержится в:
		
							родитель
							
								
									372a09454e
								
							
						
					
					
						Коммит
						be80dea7b3
					
				| @ -5,9 +5,7 @@ from lavis.models import load_model_and_preprocess | |||||||
| 
 | 
 | ||||||
| 
 | 
 | ||||||
| class SummaryDetector(AnalysisMethod): | class SummaryDetector(AnalysisMethod): | ||||||
|     def __init__( |     def __init__(self, subdict: dict) -> None: | ||||||
|         self, subdict: dict |  | ||||||
|     ) -> None: |  | ||||||
|         super().__init__(subdict) |         super().__init__(subdict) | ||||||
|         self.subdict.update(self.set_keys()) |         self.subdict.update(self.set_keys()) | ||||||
|         self.image_summary = { |         self.image_summary = { | ||||||
| @ -19,8 +17,8 @@ class SummaryDetector(AnalysisMethod): | |||||||
| 
 | 
 | ||||||
|     summary_model, summary_vis_processors, _ = load_model_and_preprocess( |     summary_model, summary_vis_processors, _ = load_model_and_preprocess( | ||||||
|         name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device |         name="blip_caption", model_type="base_coco", is_eval=True, device=summary_device | ||||||
|         ) |     ) | ||||||
|      | 
 | ||||||
|     def set_keys(self) -> dict: |     def set_keys(self) -> dict: | ||||||
|         params = { |         params = { | ||||||
|             "const_image_summary": None, |             "const_image_summary": None, | ||||||
| @ -32,33 +30,54 @@ class SummaryDetector(AnalysisMethod): | |||||||
| 
 | 
 | ||||||
|         path = self.subdict["filename"] |         path = self.subdict["filename"] | ||||||
|         raw_image = Image.open(path).convert("RGB") |         raw_image = Image.open(path).convert("RGB") | ||||||
|         image = self.summary_vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device) |         image = ( | ||||||
|         self.image_summary["const_image_summary"] = self.summary_model.generate({"image": image})[0] |             self.summary_vis_processors["eval"](raw_image) | ||||||
|         self.image_summary["3_non-deterministic summary"] = self.summary_model.generate({"image": image}, use_nucleus_sampling=True, num_captions=3) |             .unsqueeze(0) | ||||||
|  |             .to(self.summary_device) | ||||||
|  |         ) | ||||||
|  |         self.image_summary["const_image_summary"] = self.summary_model.generate( | ||||||
|  |             {"image": image} | ||||||
|  |         )[0] | ||||||
|  |         self.image_summary["3_non-deterministic summary"] = self.summary_model.generate( | ||||||
|  |             {"image": image}, use_nucleus_sampling=True, num_captions=3 | ||||||
|  |         ) | ||||||
|         for key in self.image_summary: |         for key in self.image_summary: | ||||||
|             self.subdict[key] = self.image_summary[key] |             self.subdict[key] = self.image_summary[key] | ||||||
|         return self.subdict |         return self.subdict | ||||||
|      | 
 | ||||||
|     summary_VQA_model, summary_VQA_vis_processors, summary_VQA_txt_processors = load_model_and_preprocess(name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device) |     ( | ||||||
|  |         summary_VQA_model, | ||||||
|  |         summary_VQA_vis_processors, | ||||||
|  |         summary_VQA_txt_processors, | ||||||
|  |     ) = load_model_and_preprocess( | ||||||
|  |         name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device | ||||||
|  |     ) | ||||||
| 
 | 
 | ||||||
|     def analyse_questions(self, list_of_questions): |     def analyse_questions(self, list_of_questions): | ||||||
|         if (len(list_of_questions)>0): |         if len(list_of_questions) > 0: | ||||||
|             path = self.subdict["filename"] |             path = self.subdict["filename"] | ||||||
|             raw_image = Image.open(path).convert("RGB") |             raw_image = Image.open(path).convert("RGB") | ||||||
|             image = self.summary_VQA_vis_processors["eval"](raw_image).unsqueeze(0).to(self.summary_device) |             image = ( | ||||||
|             question_batch =[] |                 self.summary_VQA_vis_processors["eval"](raw_image) | ||||||
|  |                 .unsqueeze(0) | ||||||
|  |                 .to(self.summary_device) | ||||||
|  |             ) | ||||||
|  |             question_batch = [] | ||||||
|             for quest in list_of_questions: |             for quest in list_of_questions: | ||||||
|                 question_batch.append(self.summary_VQA_txt_processors["eval"](quest)) |                 question_batch.append(self.summary_VQA_txt_processors["eval"](quest)) | ||||||
|             batch_size = len(list_of_questions) |             batch_size = len(list_of_questions) | ||||||
|             image_batch = image.repeat(batch_size, 1, 1, 1) |             image_batch = image.repeat(batch_size, 1, 1, 1) | ||||||
| 
 | 
 | ||||||
|             answers_batch = self.summary_VQA_model.predict_answers(samples={"image": image_batch, "text_input": question_batch}, inference_method="generate") |             answers_batch = self.summary_VQA_model.predict_answers( | ||||||
|          |                 samples={"image": image_batch, "text_input": question_batch}, | ||||||
|             for q,a in zip(question_batch,answers_batch): |                 inference_method="generate", | ||||||
|  |             ) | ||||||
|  | 
 | ||||||
|  |             for q, a in zip(question_batch, answers_batch): | ||||||
|                 self.image_summary[q] = a |                 self.image_summary[q] = a | ||||||
|          | 
 | ||||||
|             for key in self.image_summary: |             for key in self.image_summary: | ||||||
|                 self.subdict[key] = self.image_summary[key] |                 self.subdict[key] = self.image_summary[key] | ||||||
|         else:  |         else: | ||||||
|             print("Please, enter list of questions") |             print("Please, enter list of questions") | ||||||
|         return self.subdict     |         return self.subdict | ||||||
|  | |||||||
							
								
								
									
										442
									
								
								notebooks/image_summary.ipynb
									
									
									
										сгенерированный
									
									
									
								
							
							
						
						
									
										442
									
								
								notebooks/image_summary.ipynb
									
									
									
										сгенерированный
									
									
									
								
							| @ -16,21 +16,9 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 1, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "name": "stderr", |  | ||||||
|      "output_type": "stream", |  | ||||||
|      "text": [ |  | ||||||
|       "2023-01-27 13:43:45.543761: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 FMA\n", |  | ||||||
|       "To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", |  | ||||||
|       "2023-01-27 13:43:45.940025: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/pandriushchenko/anaconda3/envs/misinfo/lib/python3.10/site-packages/cv2/../../lib64:\n", |  | ||||||
|       "2023-01-27 13:43:45.940060: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /home/pandriushchenko/anaconda3/envs/misinfo/lib/python3.10/site-packages/cv2/../../lib64:\n", |  | ||||||
|       "2023-01-27 13:43:45.940063: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n" |  | ||||||
|      ] |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "import misinformation\n", |     "import misinformation\n", | ||||||
|     "import misinformation.summary as sm" |     "import misinformation.summary as sm" | ||||||
| @ -45,7 +33,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 2, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -57,7 +45,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 3, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -66,36 +54,9 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 4, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "data": { |  | ||||||
|       "text/plain": [ |  | ||||||
|        "{'100132S_ara': {'filename': '../data/images/100132S_ara.png'},\n", |  | ||||||
|        " '100447_ind': {'filename': '../data/images/100447_ind.png'},\n", |  | ||||||
|        " '100127S_ara': {'filename': '../data/images/100127S_ara.png'},\n", |  | ||||||
|        " '100134S_ara': {'filename': '../data/images/100134S_ara.png'},\n", |  | ||||||
|        " '109257_1_spa': {'filename': '../data/images/109257_1_spa.png'},\n", |  | ||||||
|        " '100130S_ara': {'filename': '../data/images/100130S_ara.png'},\n", |  | ||||||
|        " '100131S_ara': {'filename': '../data/images/100131S_ara.png'},\n", |  | ||||||
|        " '102135S_eng': {'filename': '../data/images/102135S_eng.png'},\n", |  | ||||||
|        " '102435S_2_eng': {'filename': '../data/images/102435S_2_eng.png'},\n", |  | ||||||
|        " '100368_asm': {'filename': '../data/images/100368_asm.png'},\n", |  | ||||||
|        " '100361_asm': {'filename': '../data/images/100361_asm.png'},\n", |  | ||||||
|        " '102141_1_eng': {'filename': '../data/images/102141_1_eng.png'},\n", |  | ||||||
|        " '106958S_por': {'filename': '../data/images/106958S_por.png'},\n", |  | ||||||
|        " '102134S_eng': {'filename': '../data/images/102134S_eng.png'},\n", |  | ||||||
|        " '102133S_eng': {'filename': '../data/images/102133S_eng.png'},\n", |  | ||||||
|        " '100450_ind': {'filename': '../data/images/100450_ind.png'},\n", |  | ||||||
|        " '100451S_ind': {'filename': '../data/images/100451S_ind.png'}}" |  | ||||||
|       ] |  | ||||||
|      }, |  | ||||||
|      "execution_count": 4, |  | ||||||
|      "metadata": {}, |  | ||||||
|      "output_type": "execute_result" |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "mydict" |     "mydict" | ||||||
|    ] |    ] | ||||||
| @ -109,7 +70,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 5, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -128,7 +89,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 6, |    "execution_count": null, | ||||||
|    "metadata": { |    "metadata": { | ||||||
|     "tags": [] |     "tags": [] | ||||||
|    }, |    }, | ||||||
| @ -147,143 +108,9 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 7, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "data": { |  | ||||||
|       "text/html": [ |  | ||||||
|        "<div>\n", |  | ||||||
|        "<style scoped>\n", |  | ||||||
|        "    .dataframe tbody tr th:only-of-type {\n", |  | ||||||
|        "        vertical-align: middle;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "\n", |  | ||||||
|        "    .dataframe tbody tr th {\n", |  | ||||||
|        "        vertical-align: top;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "\n", |  | ||||||
|        "    .dataframe thead th {\n", |  | ||||||
|        "        text-align: right;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "</style>\n", |  | ||||||
|        "<table border=\"1\" class=\"dataframe\">\n", |  | ||||||
|        "  <thead>\n", |  | ||||||
|        "    <tr style=\"text-align: right;\">\n", |  | ||||||
|        "      <th></th>\n", |  | ||||||
|        "      <th>filename</th>\n", |  | ||||||
|        "      <th>const_image_summary</th>\n", |  | ||||||
|        "      <th>3_non-deterministic summary</th>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "  </thead>\n", |  | ||||||
|        "  <tbody>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>0</th>\n", |  | ||||||
|        "      <td>../data/images/100132S_ara.png</td>\n", |  | ||||||
|        "      <td>a white car parked in front of a building cove...</td>\n", |  | ||||||
|        "      <td>[someone has wrapped up a large plastic bag ov...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>1</th>\n", |  | ||||||
|        "      <td>../data/images/100447_ind.png</td>\n", |  | ||||||
|        "      <td>a woman drinking from a bottle while standing ...</td>\n", |  | ||||||
|        "      <td>[a woman drinks out of a bottle and stands nex...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>2</th>\n", |  | ||||||
|        "      <td>../data/images/100127S_ara.png</td>\n", |  | ||||||
|        "      <td>a map of the world with arabic writing</td>\n", |  | ||||||
|        "      <td>[a map of the world with a message in arabic, ...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>3</th>\n", |  | ||||||
|        "      <td>../data/images/100134S_ara.png</td>\n", |  | ||||||
|        "      <td>a woman is standing in front of a sign</td>\n", |  | ||||||
|        "      <td>[two women walking and talking to each other, ...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>4</th>\n", |  | ||||||
|        "      <td>../data/images/109257_1_spa.png</td>\n", |  | ||||||
|        "      <td>a man in a suit and tie making a face</td>\n", |  | ||||||
|        "      <td>[a man is smiling and making a funny face, man...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>5</th>\n", |  | ||||||
|        "      <td>../data/images/100130S_ara.png</td>\n", |  | ||||||
|        "      <td>a group of people walking down a street next t...</td>\n", |  | ||||||
|        "      <td>[two people on the street in front of a big tr...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>6</th>\n", |  | ||||||
|        "      <td>../data/images/100131S_ara.png</td>\n", |  | ||||||
|        "      <td>a group of people standing in front of a tv</td>\n", |  | ||||||
|        "      <td>[the president is addressing his nation of the...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>7</th>\n", |  | ||||||
|        "      <td>../data/images/102135S_eng.png</td>\n", |  | ||||||
|        "      <td>a woman standing in front of a store filled wi...</td>\n", |  | ||||||
|        "      <td>[people in a supermarket standing in front of ...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>8</th>\n", |  | ||||||
|        "      <td>../data/images/102435S_2_eng.png</td>\n", |  | ||||||
|        "      <td>a man in a suit and glasses is talking</td>\n", |  | ||||||
|        "      <td>[the man is speaking about his favorite tv sho...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>9</th>\n", |  | ||||||
|        "      <td>../data/images/100368_asm.png</td>\n", |  | ||||||
|        "      <td>a group of people standing next to each other</td>\n", |  | ||||||
|        "      <td>[people doing a job next to a line of men, men...</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "  </tbody>\n", |  | ||||||
|        "</table>\n", |  | ||||||
|        "</div>" |  | ||||||
|       ], |  | ||||||
|       "text/plain": [ |  | ||||||
|        "                           filename  \\\n", |  | ||||||
|        "0    ../data/images/100132S_ara.png   \n", |  | ||||||
|        "1     ../data/images/100447_ind.png   \n", |  | ||||||
|        "2    ../data/images/100127S_ara.png   \n", |  | ||||||
|        "3    ../data/images/100134S_ara.png   \n", |  | ||||||
|        "4   ../data/images/109257_1_spa.png   \n", |  | ||||||
|        "5    ../data/images/100130S_ara.png   \n", |  | ||||||
|        "6    ../data/images/100131S_ara.png   \n", |  | ||||||
|        "7    ../data/images/102135S_eng.png   \n", |  | ||||||
|        "8  ../data/images/102435S_2_eng.png   \n", |  | ||||||
|        "9     ../data/images/100368_asm.png   \n", |  | ||||||
|        "\n", |  | ||||||
|        "                                 const_image_summary  \\\n", |  | ||||||
|        "0  a white car parked in front of a building cove...   \n", |  | ||||||
|        "1  a woman drinking from a bottle while standing ...   \n", |  | ||||||
|        "2             a map of the world with arabic writing   \n", |  | ||||||
|        "3             a woman is standing in front of a sign   \n", |  | ||||||
|        "4              a man in a suit and tie making a face   \n", |  | ||||||
|        "5  a group of people walking down a street next t...   \n", |  | ||||||
|        "6        a group of people standing in front of a tv   \n", |  | ||||||
|        "7  a woman standing in front of a store filled wi...   \n", |  | ||||||
|        "8             a man in a suit and glasses is talking   \n", |  | ||||||
|        "9      a group of people standing next to each other   \n", |  | ||||||
|        "\n", |  | ||||||
|        "                         3_non-deterministic summary  \n", |  | ||||||
|        "0  [someone has wrapped up a large plastic bag ov...  \n", |  | ||||||
|        "1  [a woman drinks out of a bottle and stands nex...  \n", |  | ||||||
|        "2  [a map of the world with a message in arabic, ...  \n", |  | ||||||
|        "3  [two women walking and talking to each other, ...  \n", |  | ||||||
|        "4  [a man is smiling and making a funny face, man...  \n", |  | ||||||
|        "5  [two people on the street in front of a big tr...  \n", |  | ||||||
|        "6  [the president is addressing his nation of the...  \n", |  | ||||||
|        "7  [people in a supermarket standing in front of ...  \n", |  | ||||||
|        "8  [the man is speaking about his favorite tv sho...  \n", |  | ||||||
|        "9  [people doing a job next to a line of men, men...  " |  | ||||||
|       ] |  | ||||||
|      }, |  | ||||||
|      "execution_count": 7, |  | ||||||
|      "metadata": {}, |  | ||||||
|      "output_type": "execute_result" |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "df.head(10)" |     "df.head(10)" | ||||||
|    ] |    ] | ||||||
| @ -297,7 +124,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 8, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -319,24 +146,9 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 9, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "data": { |  | ||||||
|       "application/vnd.jupyter.widget-view+json": { |  | ||||||
|        "model_id": "0324b10be268470ab4e550cb0153b9e8", |  | ||||||
|        "version_major": 2, |  | ||||||
|        "version_minor": 0 |  | ||||||
|       }, |  | ||||||
|       "text/plain": [ |  | ||||||
|        "HBox(children=(Select(layout=Layout(width='20%'), options=('100132S_ara', '100447_ind', '100127S_ara', '100134…" |  | ||||||
|       ] |  | ||||||
|      }, |  | ||||||
|      "metadata": {}, |  | ||||||
|      "output_type": "display_data" |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "misinformation.explore_analysis(mydict, identify=\"summary\")" |     "misinformation.explore_analysis(mydict, identify=\"summary\")" | ||||||
|    ] |    ] | ||||||
| @ -357,20 +169,20 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 10, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
|     "list_of_questions = [\n", |     "list_of_questions = [\n", | ||||||
|     "\"How many persons on the picture?\",\n", |     "    \"How many persons on the picture?\",\n", | ||||||
|     "\"Are there any politicians in the picture?\",\n", |     "    \"Are there any politicians in the picture?\",\n", | ||||||
|     "\"Does the picture show something from medicine?\",    \n", |     "    \"Does the picture show something from medicine?\",\n", | ||||||
|     "]" |     "]" | ||||||
|    ] |    ] | ||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 11, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -380,24 +192,9 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 12, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "data": { |  | ||||||
|       "application/vnd.jupyter.widget-view+json": { |  | ||||||
|        "model_id": "e446aa565f6345ab8256771f578fbf92", |  | ||||||
|        "version_major": 2, |  | ||||||
|        "version_minor": 0 |  | ||||||
|       }, |  | ||||||
|       "text/plain": [ |  | ||||||
|        "HBox(children=(Select(layout=Layout(width='20%'), options=('100132S_ara', '100447_ind', '100127S_ara', '100134…" |  | ||||||
|       ] |  | ||||||
|      }, |  | ||||||
|      "metadata": {}, |  | ||||||
|      "output_type": "display_data" |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "misinformation.explore_analysis(mydict, identify=\"summary\")" |     "misinformation.explore_analysis(mydict, identify=\"summary\")" | ||||||
|    ] |    ] | ||||||
| @ -411,7 +208,7 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 13, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
| @ -421,207 +218,16 @@ | |||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 14, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [ |    "outputs": [], | ||||||
|     { |  | ||||||
|      "data": { |  | ||||||
|       "text/html": [ |  | ||||||
|        "<div>\n", |  | ||||||
|        "<style scoped>\n", |  | ||||||
|        "    .dataframe tbody tr th:only-of-type {\n", |  | ||||||
|        "        vertical-align: middle;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "\n", |  | ||||||
|        "    .dataframe tbody tr th {\n", |  | ||||||
|        "        vertical-align: top;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "\n", |  | ||||||
|        "    .dataframe thead th {\n", |  | ||||||
|        "        text-align: right;\n", |  | ||||||
|        "    }\n", |  | ||||||
|        "</style>\n", |  | ||||||
|        "<table border=\"1\" class=\"dataframe\">\n", |  | ||||||
|        "  <thead>\n", |  | ||||||
|        "    <tr style=\"text-align: right;\">\n", |  | ||||||
|        "      <th></th>\n", |  | ||||||
|        "      <th>filename</th>\n", |  | ||||||
|        "      <th>const_image_summary</th>\n", |  | ||||||
|        "      <th>3_non-deterministic summary</th>\n", |  | ||||||
|        "      <th>how many persons on the picture?</th>\n", |  | ||||||
|        "      <th>are there any politicians in the picture?</th>\n", |  | ||||||
|        "      <th>does the picture show something from medicine?</th>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "  </thead>\n", |  | ||||||
|        "  <tbody>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>0</th>\n", |  | ||||||
|        "      <td>../data/images/100132S_ara.png</td>\n", |  | ||||||
|        "      <td>a white car parked in front of a building cove...</td>\n", |  | ||||||
|        "      <td>[the man is sitting on a car near a large bann...</td>\n", |  | ||||||
|        "      <td>1</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>1</th>\n", |  | ||||||
|        "      <td>../data/images/100447_ind.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>2</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>2</th>\n", |  | ||||||
|        "      <td>../data/images/100127S_ara.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>0</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>3</th>\n", |  | ||||||
|        "      <td>../data/images/100134S_ara.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>2</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>4</th>\n", |  | ||||||
|        "      <td>../data/images/109257_1_spa.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>1</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>5</th>\n", |  | ||||||
|        "      <td>../data/images/100130S_ara.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>3</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>6</th>\n", |  | ||||||
|        "      <td>../data/images/100131S_ara.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>many</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>7</th>\n", |  | ||||||
|        "      <td>../data/images/102135S_eng.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>6</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>8</th>\n", |  | ||||||
|        "      <td>../data/images/102435S_2_eng.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>1</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "    <tr>\n", |  | ||||||
|        "      <th>9</th>\n", |  | ||||||
|        "      <td>../data/images/100368_asm.png</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>None</td>\n", |  | ||||||
|        "      <td>15</td>\n", |  | ||||||
|        "      <td>yes</td>\n", |  | ||||||
|        "      <td>no</td>\n", |  | ||||||
|        "    </tr>\n", |  | ||||||
|        "  </tbody>\n", |  | ||||||
|        "</table>\n", |  | ||||||
|        "</div>" |  | ||||||
|       ], |  | ||||||
|       "text/plain": [ |  | ||||||
|        "                           filename  \\\n", |  | ||||||
|        "0    ../data/images/100132S_ara.png   \n", |  | ||||||
|        "1     ../data/images/100447_ind.png   \n", |  | ||||||
|        "2    ../data/images/100127S_ara.png   \n", |  | ||||||
|        "3    ../data/images/100134S_ara.png   \n", |  | ||||||
|        "4   ../data/images/109257_1_spa.png   \n", |  | ||||||
|        "5    ../data/images/100130S_ara.png   \n", |  | ||||||
|        "6    ../data/images/100131S_ara.png   \n", |  | ||||||
|        "7    ../data/images/102135S_eng.png   \n", |  | ||||||
|        "8  ../data/images/102435S_2_eng.png   \n", |  | ||||||
|        "9     ../data/images/100368_asm.png   \n", |  | ||||||
|        "\n", |  | ||||||
|        "                                 const_image_summary  \\\n", |  | ||||||
|        "0  a white car parked in front of a building cove...   \n", |  | ||||||
|        "1                                               None   \n", |  | ||||||
|        "2                                               None   \n", |  | ||||||
|        "3                                               None   \n", |  | ||||||
|        "4                                               None   \n", |  | ||||||
|        "5                                               None   \n", |  | ||||||
|        "6                                               None   \n", |  | ||||||
|        "7                                               None   \n", |  | ||||||
|        "8                                               None   \n", |  | ||||||
|        "9                                               None   \n", |  | ||||||
|        "\n", |  | ||||||
|        "                         3_non-deterministic summary  \\\n", |  | ||||||
|        "0  [the man is sitting on a car near a large bann...   \n", |  | ||||||
|        "1                                               None   \n", |  | ||||||
|        "2                                               None   \n", |  | ||||||
|        "3                                               None   \n", |  | ||||||
|        "4                                               None   \n", |  | ||||||
|        "5                                               None   \n", |  | ||||||
|        "6                                               None   \n", |  | ||||||
|        "7                                               None   \n", |  | ||||||
|        "8                                               None   \n", |  | ||||||
|        "9                                               None   \n", |  | ||||||
|        "\n", |  | ||||||
|        "  how many persons on the picture? are there any politicians in the picture?  \\\n", |  | ||||||
|        "0                                1                                        no   \n", |  | ||||||
|        "1                                2                                        no   \n", |  | ||||||
|        "2                                0                                        no   \n", |  | ||||||
|        "3                                2                                        no   \n", |  | ||||||
|        "4                                1                                       yes   \n", |  | ||||||
|        "5                                3                                        no   \n", |  | ||||||
|        "6                             many                                       yes   \n", |  | ||||||
|        "7                                6                                        no   \n", |  | ||||||
|        "8                                1                                       yes   \n", |  | ||||||
|        "9                               15                                       yes   \n", |  | ||||||
|        "\n", |  | ||||||
|        "  does the picture show something from medicine?  \n", |  | ||||||
|        "0                                             no  \n", |  | ||||||
|        "1                                            yes  \n", |  | ||||||
|        "2                                             no  \n", |  | ||||||
|        "3                                            yes  \n", |  | ||||||
|        "4                                             no  \n", |  | ||||||
|        "5                                             no  \n", |  | ||||||
|        "6                                             no  \n", |  | ||||||
|        "7                                             no  \n", |  | ||||||
|        "8                                             no  \n", |  | ||||||
|        "9                                             no  " |  | ||||||
|       ] |  | ||||||
|      }, |  | ||||||
|      "execution_count": 14, |  | ||||||
|      "metadata": {}, |  | ||||||
|      "output_type": "execute_result" |  | ||||||
|     } |  | ||||||
|    ], |  | ||||||
|    "source": [ |    "source": [ | ||||||
|     "df2.head(10)" |     "df2.head(10)" | ||||||
|    ] |    ] | ||||||
|   }, |   }, | ||||||
|   { |   { | ||||||
|    "cell_type": "code", |    "cell_type": "code", | ||||||
|    "execution_count": 15, |    "execution_count": null, | ||||||
|    "metadata": {}, |    "metadata": {}, | ||||||
|    "outputs": [], |    "outputs": [], | ||||||
|    "source": [ |    "source": [ | ||||||
|  | |||||||
		Загрузка…
	
	
			
			x
			
			
		
	
		Ссылка в новой задаче
	
	Block a user
	![66853113+pre-commit-ci[bot]@users.noreply.github.com](/assets/img/avatar_default.png) pre-commit-ci[bot]
						pre-commit-ci[bot]