зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-29 21:16:06 +02:00
85 строки
2.4 KiB
Python
85 строки
2.4 KiB
Python
import ipywidgets
|
|
|
|
from IPython.display import display
|
|
from deepface import DeepFace
|
|
from retinaface import RetinaFace
|
|
|
|
|
|
def facial_expression_analysis(img_path):
|
|
result = {"filename": img_path}
|
|
|
|
# Find (multiple) faces in the image and cut them
|
|
faces = RetinaFace.extract_faces(img_path)
|
|
|
|
# If no faces are found, we return an empty dictionary
|
|
if len(faces) == 0:
|
|
return result
|
|
|
|
# Find the biggest face image in the detected ones
|
|
maxface = max(faces, key=lambda f: f.shape[0] * f.shape[1])
|
|
|
|
# Run the full DeepFace analysis
|
|
result["deepface_results"] = DeepFace.analyze(
|
|
img_path=maxface,
|
|
actions=["age", "gender", "race", "emotion"],
|
|
prog_bar=False,
|
|
detector_backend="skip",
|
|
)
|
|
|
|
# We remove the region, as the data is not correct - after all we are
|
|
# running the analysis on a subimage.
|
|
del result["deepface_results"]["region"]
|
|
|
|
return result
|
|
|
|
|
|
class JSONContainer:
|
|
"""Expose a Python dictionary as a JSON document in JupyterLab
|
|
rich display rendering.
|
|
"""
|
|
|
|
def __init__(self, data={}):
|
|
self._data = data
|
|
|
|
def _repr_json_(self):
|
|
return self._data
|
|
|
|
|
|
def explore_face_recognition(image_paths):
|
|
# Create an image selector widget
|
|
image_select = ipywidgets.Select(
|
|
options=image_paths, layout=ipywidgets.Layout(width="20%"), rows=20
|
|
)
|
|
|
|
# Set up the facial recognition output widget
|
|
output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%"))
|
|
|
|
# Set up the image selection and display widget
|
|
image_widget = ipywidgets.Box(
|
|
children=[],
|
|
layout=ipywidgets.Layout(width="50%"),
|
|
)
|
|
|
|
# Register the tab switch logic
|
|
def switch(_):
|
|
# Clear existing output
|
|
image_widget.children = ()
|
|
output.clear_output()
|
|
|
|
# Create the new content
|
|
image_widget.children = (ipywidgets.Image.from_file(image_select.value),)
|
|
|
|
# This output widget absorbes print statements that are messing with
|
|
# the widget output and cannot be disabled through the API.
|
|
with ipywidgets.Output():
|
|
analysis = facial_expression_analysis(image_select.value)
|
|
with output:
|
|
display(JSONContainer(analysis))
|
|
|
|
# Register the handler and trigger it immediately
|
|
image_select.observe(switch, names=("value",), type="change")
|
|
switch(None)
|
|
|
|
# Show the combined widget
|
|
return ipywidgets.HBox([image_select, image_widget, output])
|