AMMICO/misinformation/test/test_text.py
2023-03-30 11:23:01 +02:00

165 строки
6.3 KiB
Python
Исходник Ответственный История

Этот файл содержит неоднозначные символы Юникода

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import pytest
import spacy
import misinformation.text as tt
@pytest.fixture
def set_testdict(get_path):
testdict = {
"IMG_3755": {
"filename": get_path + "IMG_3755.jpg",
},
"IMG_3756": {
"filename": get_path + "IMG_3756.jpg",
},
"IMG_3757": {
"filename": get_path + "IMG_3757.jpg",
},
}
return testdict
LANGUAGES = ["de", "om", "en"]
def test_TextDetector(set_testdict):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
assert test_obj.subdict["text"] is None
assert test_obj.subdict["text_language"] is None
assert test_obj.subdict["text_english"] is None
assert not test_obj.analyse_text
@pytest.mark.gcv
def test_analyse_image(set_testdict, set_environ):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
test_obj.analyse_image()
test_obj = tt.TextDetector(set_testdict[item], analyse_text=True)
test_obj.analyse_image()
@pytest.mark.gcv
def test_get_text_from_image(set_testdict, get_path, set_environ):
for item in set_testdict:
test_obj = tt.TextDetector(set_testdict[item])
test_obj.get_text_from_image()
ref_file = get_path + "text_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
assert test_obj.subdict["text"] == reference_text
def test_translate_text(set_testdict, get_path):
for item, lang in zip(set_testdict, LANGUAGES):
test_obj = tt.TextDetector(set_testdict[item])
ref_file = get_path + "text_" + item + ".txt"
trans_file = get_path + "text_translated_" + item + ".txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
with open(trans_file, "r", encoding="utf8") as file:
translated_text = file.read()
test_obj.subdict["text"] = reference_text
test_obj.translate_text()
assert test_obj.subdict["text_language"] == lang
assert test_obj.subdict["text_english"] == translated_text
def test_remove_linebreaks():
test_obj = tt.TextDetector({})
test_obj.subdict["text"] = "This is \n a test."
test_obj.subdict["text_english"] = "This is \n another\n test."
test_obj.remove_linebreaks()
assert test_obj.subdict["text"] == "This is a test."
assert test_obj.subdict["text_english"] == "This is another test."
def test_run_spacy(set_testdict, get_path):
test_obj = tt.TextDetector(set_testdict["IMG_3755"], analyse_text=True)
ref_file = get_path + "text_IMG_3755.txt"
with open(ref_file, "r") as file:
reference_text = file.read()
test_obj.subdict["text_english"] = reference_text
test_obj._run_spacy()
assert isinstance(test_obj.doc, spacy.tokens.doc.Doc)
def test_clean_text(set_testdict):
nlp = spacy.load("en_core_web_md")
doc = nlp("I like cats and fjejg")
test_obj = tt.TextDetector(set_testdict["IMG_3755"])
test_obj.doc = doc
test_obj.clean_text()
result = "I like cats and"
assert test_obj.subdict["text_clean"] == result
def test_correct_spelling():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I lik cats ad dogs."
test_obj.correct_spelling()
result = "I like cats ad dogs."
assert test_obj.subdict["text_english_correct"] == result
def test_sentiment_analysis():
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
test_obj.subdict["text_english"] = "I love cats and dogs."
test_obj._run_spacy()
test_obj.correct_spelling()
test_obj.sentiment_analysis()
assert test_obj.subdict["polarity"] == 0.5
assert test_obj.subdict["subjectivity"] == 0.6
def test_text_summary(get_path):
mydict = {}
test_obj = tt.TextDetector(mydict, analyse_text=True)
ref_file = get_path + "example_summary.txt"
with open(ref_file, "r", encoding="utf8") as file:
reference_text = file.read()
test_obj.subdict["text_english"] = reference_text
test_obj.text_summary()
reference_summary = " Im sorry, but I dont want to be an emperor. Thats not my business. I should like to help everyone - if possible - Jew, Gentile - black man - white . We all want to help one another. In this world there is room for everyone. The way of life can be free and beautiful, but we have lost the way ."
assert mydict["summary_text"] == reference_summary
def test_PostprocessText(set_testdict, get_path):
reference_dict = "THE\nALGEBRAIC\nEIGENVALUE\nPROBLEM\nDOM\nNVS TIO\nMINA\nMonographs\non Numerical Analysis\nJ.. H. WILKINSON"
reference_df = "Mathematische Formelsammlung\nfür Ingenieure und Naturwissenschaftler\nMit zahlreichen Abbildungen und Rechenbeispielen\nund einer ausführlichen Integraltafel\n3., verbesserte Auflage"
img_numbers = ["IMG_3755", "IMG_3756", "IMG_3757"]
for image_ref in img_numbers:
ref_file = get_path + "text_" + image_ref + ".txt"
with open(ref_file, "r") as file:
reference_text = file.read()
set_testdict[image_ref]["text_english"] = reference_text
obj = tt.PostprocessText(mydict=set_testdict)
test_dict = obj.list_text_english[2].replace("\r", "")
assert test_dict == reference_dict
for key in set_testdict.keys():
set_testdict[key].pop("text_english")
with pytest.raises(ValueError):
tt.PostprocessText(mydict=set_testdict)
obj = tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out.csv")
# make sure test works on windows where end-of-line character is \r\n
test_df = obj.list_text_english[0].replace("\r", "")
assert test_df == reference_df
with pytest.raises(ValueError):
tt.PostprocessText(use_csv=True, csv_path=get_path + "test_data_out_nokey.csv")
with pytest.raises(ValueError):
tt.PostprocessText()
def test_analyse_topic(get_path):
_, topic_df, most_frequent_topics = tt.PostprocessText(
use_csv=True, csv_path=get_path + "topic_analysis_test.csv"
).analyse_topic()
# since this is not deterministic we cannot be sure we get the same result twice
assert len(topic_df) == 2
assert topic_df["Name"].iloc[0] == "0_the_feat_of_is"
assert most_frequent_topics[0][0][0] == "the"