зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
* changed summmary.py logic * fixing test_summary * added macos for testing * fixed_display_test * fixed docs and exceptions * added dropout menu for summary * added new SummaryDetector to AnalysisExplorer * bug fixing * code improving * fixed test_display * fixed code smells * reduce tests for macos * added some tests and exceptions for summary init * changed CI, runs pytest independently * exclude test_analysisExplorer from macos in CI * moved some tests from test_init_summary to test_advanced_init_summary and mark them as long --------- Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
268 строки
9.7 KiB
Python
268 строки
9.7 KiB
Python
from ammico.utils import AnalysisMethod
|
|
from torch import cuda, no_grad
|
|
from PIL import Image
|
|
from lavis.models import load_model_and_preprocess
|
|
|
|
|
|
class SummaryDetector(AnalysisMethod):
|
|
def __init__(
|
|
self,
|
|
subdict: dict = {},
|
|
summary_model_type: str = "base",
|
|
analysis_type: str = "summary_and_questions",
|
|
list_of_questions: str = None,
|
|
summary_model=None,
|
|
summary_vis_processors=None,
|
|
summary_vqa_model=None,
|
|
summary_vqa_vis_processors=None,
|
|
summary_vqa_txt_processors=None,
|
|
) -> None:
|
|
"""
|
|
SummaryDetector class for analysing images using the blip_caption model.
|
|
|
|
Args:
|
|
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
|
|
summary_model_type (str, optional): Type of blip_caption model to use. Can be "base" or "large". Defaults to "base".
|
|
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
|
|
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
|
|
summary_model ([type], optional): blip_caption model. Defaults to None.
|
|
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
|
|
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
|
|
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
|
|
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
|
|
|
|
Raises:
|
|
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
|
|
|
|
Returns:
|
|
None.
|
|
"""
|
|
|
|
super().__init__(subdict)
|
|
if analysis_type not in ["summary", "questions", "summary_and_questions"]:
|
|
raise ValueError(
|
|
"analysis_type must be one of 'summary', 'questions' or 'summary_and_questions'"
|
|
)
|
|
self.summary_device = "cuda" if cuda.is_available() else "cpu"
|
|
allowed_model_types = ["base", "large"]
|
|
if summary_model_type not in allowed_model_types:
|
|
raise ValueError(
|
|
"Model type is not allowed - please select one of {}".format(
|
|
allowed_model_types
|
|
)
|
|
)
|
|
self.summary_model_type = summary_model_type
|
|
self.analysis_type = analysis_type
|
|
if list_of_questions is None:
|
|
self.list_of_questions = [
|
|
"Are there people in the image?",
|
|
"What is this picture about?",
|
|
]
|
|
elif (not isinstance(list_of_questions, list)) or (
|
|
not all(isinstance(i, str) for i in list_of_questions)
|
|
):
|
|
raise ValueError("list_of_questions must be a list of string (questions)")
|
|
else:
|
|
self.list_of_questions = list_of_questions
|
|
if (
|
|
(summary_model is None)
|
|
and (summary_vis_processors is None)
|
|
and (analysis_type != "questions")
|
|
):
|
|
self.summary_model, self.summary_vis_processors = self.load_model(
|
|
model_type=summary_model_type
|
|
)
|
|
else:
|
|
self.summary_model = summary_model
|
|
self.summary_vis_processors = summary_vis_processors
|
|
if (
|
|
(summary_vqa_model is None)
|
|
and (summary_vqa_vis_processors is None)
|
|
and (summary_vqa_txt_processors is None)
|
|
and (analysis_type != "summary")
|
|
):
|
|
(
|
|
self.summary_vqa_model,
|
|
self.summary_vqa_vis_processors,
|
|
self.summary_vqa_txt_processors,
|
|
) = self.load_vqa_model()
|
|
else:
|
|
self.summary_vqa_model = summary_vqa_model
|
|
self.summary_vqa_vis_processors = summary_vqa_vis_processors
|
|
self.summary_vqa_txt_processors = summary_vqa_txt_processors
|
|
|
|
def load_model_base(self):
|
|
"""
|
|
Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
model (torch.nn.Module): model.
|
|
vis_processors (dict): preprocessors for visual inputs.
|
|
"""
|
|
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
|
|
name="blip_caption",
|
|
model_type="base_coco",
|
|
is_eval=True,
|
|
device=self.summary_device,
|
|
)
|
|
return summary_model, summary_vis_processors
|
|
|
|
def load_model_large(self):
|
|
"""
|
|
Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
model (torch.nn.Module): model.
|
|
vis_processors (dict): preprocessors for visual inputs.
|
|
"""
|
|
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
|
|
name="blip_caption",
|
|
model_type="large_coco",
|
|
is_eval=True,
|
|
device=self.summary_device,
|
|
)
|
|
return summary_model, summary_vis_processors
|
|
|
|
def load_model(self, model_type: str):
|
|
"""
|
|
Load blip_caption model and preprocessors for visual inputs from lavis.models.
|
|
|
|
Args:
|
|
model_type (str): type of the model.
|
|
|
|
Returns:
|
|
model (torch.nn.Module): model.
|
|
vis_processors (dict): preprocessors for visual inputs.
|
|
"""
|
|
select_model = {
|
|
"base": SummaryDetector.load_model_base,
|
|
"large": SummaryDetector.load_model_large,
|
|
}
|
|
summary_model, summary_vis_processors = select_model[model_type](self)
|
|
return summary_model, summary_vis_processors
|
|
|
|
def load_vqa_model(self):
|
|
"""
|
|
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
model (torch.nn.Module): model.
|
|
vis_processors (dict): preprocessors for visual inputs.
|
|
txt_processors (dict): preprocessors for text inputs.
|
|
|
|
"""
|
|
(
|
|
summary_vqa_model,
|
|
summary_vqa_vis_processors,
|
|
summary_vqa_txt_processors,
|
|
) = load_model_and_preprocess(
|
|
name="blip_vqa",
|
|
model_type="vqav2",
|
|
is_eval=True,
|
|
device=self.summary_device,
|
|
)
|
|
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
|
|
|
|
def analyse_image(self):
|
|
"""
|
|
Analyse image with blip_caption model.
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
self.subdict (dict): dictionary with analysis results.
|
|
"""
|
|
if self.analysis_type == "summary_and_questions":
|
|
self.analyse_summary()
|
|
self.analyse_questions(self.list_of_questions)
|
|
elif self.analysis_type == "summary":
|
|
self.analyse_summary()
|
|
elif self.analysis_type == "questions":
|
|
self.analyse_questions(self.list_of_questions)
|
|
|
|
return self.subdict
|
|
|
|
def analyse_summary(self):
|
|
"""
|
|
Create 1 constant and 3 non deterministic captions for image.
|
|
|
|
Args:
|
|
|
|
Returns:
|
|
self.subdict (dict): dictionary with analysis results.
|
|
"""
|
|
|
|
path = self.subdict["filename"]
|
|
raw_image = Image.open(path).convert("RGB")
|
|
image = (
|
|
self.summary_vis_processors["eval"](raw_image)
|
|
.unsqueeze(0)
|
|
.to(self.summary_device)
|
|
)
|
|
with no_grad():
|
|
self.subdict["const_image_summary"] = self.summary_model.generate(
|
|
{"image": image}
|
|
)[0]
|
|
self.subdict["3_non-deterministic summary"] = self.summary_model.generate(
|
|
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
|
)
|
|
return self.subdict
|
|
|
|
def analyse_questions(self, list_of_questions: list[str]) -> dict:
|
|
"""
|
|
Generate answers to free-form questions about image written in natural language.
|
|
|
|
Args:
|
|
list_of_questions (list[str]): list of questions.
|
|
|
|
Returns:
|
|
self.subdict (dict): dictionary with answers to questions.
|
|
"""
|
|
if (
|
|
(self.summary_vqa_model is None)
|
|
and (self.summary_vqa_vis_processors is None)
|
|
and (self.summary_vqa_txt_processors is None)
|
|
):
|
|
(
|
|
self.summary_vqa_model,
|
|
self.summary_vqa_vis_processors,
|
|
self.summary_vqa_txt_processors,
|
|
) = load_model_and_preprocess(
|
|
name="blip_vqa",
|
|
model_type="vqav2",
|
|
is_eval=True,
|
|
device=self.summary_device,
|
|
)
|
|
if len(list_of_questions) > 0:
|
|
path = self.subdict["filename"]
|
|
raw_image = Image.open(path).convert("RGB")
|
|
image = (
|
|
self.summary_vqa_vis_processors["eval"](raw_image)
|
|
.unsqueeze(0)
|
|
.to(self.summary_device)
|
|
)
|
|
question_batch = []
|
|
for quest in list_of_questions:
|
|
question_batch.append(self.summary_vqa_txt_processors["eval"](quest))
|
|
batch_size = len(list_of_questions)
|
|
image_batch = image.repeat(batch_size, 1, 1, 1)
|
|
|
|
with no_grad():
|
|
answers_batch = self.summary_vqa_model.predict_answers(
|
|
samples={"image": image_batch, "text_input": question_batch},
|
|
inference_method="generate",
|
|
)
|
|
|
|
for q, a in zip(list_of_questions, answers_batch):
|
|
self.subdict[q] = a
|
|
|
|
else:
|
|
print("Please, enter list of questions")
|
|
return self.subdict
|