зеркало из
https://github.com/ssciwr/AMMICO.git
synced 2025-10-30 13:36:04 +02:00
108 строки
3.6 KiB
Python
108 строки
3.6 KiB
Python
from misinformation.utils import AnalysisMethod
|
|
import torch
|
|
from PIL import Image
|
|
from lavis.models import load_model_and_preprocess
|
|
|
|
|
|
class SummaryDetector(AnalysisMethod):
|
|
def __init__(self, subdict: dict) -> None:
|
|
super().__init__(subdict)
|
|
self.subdict.update(self.set_keys())
|
|
self.image_summary = {
|
|
"const_image_summary": None,
|
|
"3_non-deterministic summary": None,
|
|
}
|
|
|
|
summary_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def load_model_base(self):
|
|
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
|
|
name="blip_caption",
|
|
model_type="base_coco",
|
|
is_eval=True,
|
|
device=SummaryDetector.summary_device,
|
|
)
|
|
return summary_model, summary_vis_processors
|
|
|
|
def load_model_large(self):
|
|
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
|
|
name="blip_caption",
|
|
model_type="large_coco",
|
|
is_eval=True,
|
|
device=SummaryDetector.summary_device,
|
|
)
|
|
return summary_model, summary_vis_processors
|
|
|
|
def set_keys(self) -> dict:
|
|
params = {
|
|
"const_image_summary": None,
|
|
"3_non-deterministic summary": None,
|
|
}
|
|
return params
|
|
|
|
def analyse_image(self, model_type):
|
|
|
|
select_model = {
|
|
"base": self.load_model_base,
|
|
"large": self.load_model_large,
|
|
}
|
|
summary_model, summary_vis_processors = select_model[model_type]()
|
|
path = self.subdict["filename"]
|
|
raw_image = Image.open(path).convert("RGB")
|
|
image = (
|
|
summary_vis_processors["eval"](raw_image)
|
|
.unsqueeze(0)
|
|
.to(self.summary_device)
|
|
)
|
|
with torch.no_grad():
|
|
self.image_summary["const_image_summary"] = summary_model.generate(
|
|
{"image": image}
|
|
)[0]
|
|
self.image_summary[
|
|
"3_non-deterministic summary"
|
|
] = summary_model.generate(
|
|
{"image": image}, use_nucleus_sampling=True, num_captions=3
|
|
)
|
|
for key in self.image_summary:
|
|
self.subdict[key] = self.image_summary[key]
|
|
return self.subdict
|
|
|
|
(
|
|
summary_VQA_model,
|
|
summary_VQA_vis_processors,
|
|
summary_VQA_txt_processors,
|
|
) = load_model_and_preprocess(
|
|
name="blip_vqa", model_type="vqav2", is_eval=True, device=summary_device
|
|
)
|
|
|
|
def analyse_questions(self, model_type, list_of_questions):
|
|
|
|
if len(list_of_questions) > 0:
|
|
path = self.subdict["filename"]
|
|
raw_image = Image.open(path).convert("RGB")
|
|
image = (
|
|
summary_VQA_vis_processors["eval"](raw_image)
|
|
.unsqueeze(0)
|
|
.to(self.summary_device)
|
|
)
|
|
question_batch = []
|
|
for quest in list_of_questions:
|
|
question_batch.append(self.summary_VQA_txt_processors["eval"](quest))
|
|
batch_size = len(list_of_questions)
|
|
image_batch = image.repeat(batch_size, 1, 1, 1)
|
|
|
|
with torch.no_grad():
|
|
answers_batch = self.summary_VQA_model.predict_answers(
|
|
samples={"image": image_batch, "text_input": question_batch},
|
|
inference_method="generate",
|
|
)
|
|
|
|
for q, a in zip(question_batch, answers_batch):
|
|
self.image_summary[q] = a
|
|
|
|
for key in self.image_summary:
|
|
self.subdict[key] = self.image_summary[key]
|
|
else:
|
|
print("Please, enter list of questions")
|
|
return self.subdict
|