AMMICO/ammico/summary.py
Petr Andriushchenko 8d8ea52287
changed summmary.py logic (#121)
* changed summmary.py logic

* fixing test_summary

* added macos for testing

* fixed_display_test

* fixed docs and exceptions

* added dropout menu for summary

* added new SummaryDetector to AnalysisExplorer

* bug fixing

* code improving

* fixed test_display

* fixed code smells

* reduce tests for macos

* added some tests and exceptions for summary init

* changed CI, runs pytest independently

* exclude test_analysisExplorer from macos in CI

* moved some tests from test_init_summary to test_advanced_init_summary and mark them as long

---------

Co-authored-by: Inga Ulusoy <inga.ulusoy@uni-heidelberg.de>
2023-06-27 09:19:01 +02:00

268 строки
9.7 KiB
Python

from ammico.utils import AnalysisMethod
from torch import cuda, no_grad
from PIL import Image
from lavis.models import load_model_and_preprocess
class SummaryDetector(AnalysisMethod):
def __init__(
self,
subdict: dict = {},
summary_model_type: str = "base",
analysis_type: str = "summary_and_questions",
list_of_questions: str = None,
summary_model=None,
summary_vis_processors=None,
summary_vqa_model=None,
summary_vqa_vis_processors=None,
summary_vqa_txt_processors=None,
) -> None:
"""
SummaryDetector class for analysing images using the blip_caption model.
Args:
subdict (dict, optional): Dictionary containing the image to be analysed. Defaults to {}.
summary_model_type (str, optional): Type of blip_caption model to use. Can be "base" or "large". Defaults to "base".
analysis_type (str, optional): Type of analysis to perform. Can be "summary", "questions" or "summary_and_questions". Defaults to "summary_and_questions".
list_of_questions (list, optional): List of questions to answer. Defaults to ["Are there people in the image?", "What is this picture about?"].
summary_model ([type], optional): blip_caption model. Defaults to None.
summary_vis_processors ([type], optional): Preprocessors for visual inputs. Defaults to None.
summary_vqa_model ([type], optional): blip_vqa model. Defaults to None.
summary_vqa_vis_processors ([type], optional): Preprocessors for vqa visual inputs. Defaults to None.
summary_vqa_txt_processors ([type], optional): Preprocessors for vqa text inputs. Defaults to None.
Raises:
ValueError: If analysis_type is not one of "summary", "questions" or "summary_and_questions".
Returns:
None.
"""
super().__init__(subdict)
if analysis_type not in ["summary", "questions", "summary_and_questions"]:
raise ValueError(
"analysis_type must be one of 'summary', 'questions' or 'summary_and_questions'"
)
self.summary_device = "cuda" if cuda.is_available() else "cpu"
allowed_model_types = ["base", "large"]
if summary_model_type not in allowed_model_types:
raise ValueError(
"Model type is not allowed - please select one of {}".format(
allowed_model_types
)
)
self.summary_model_type = summary_model_type
self.analysis_type = analysis_type
if list_of_questions is None:
self.list_of_questions = [
"Are there people in the image?",
"What is this picture about?",
]
elif (not isinstance(list_of_questions, list)) or (
not all(isinstance(i, str) for i in list_of_questions)
):
raise ValueError("list_of_questions must be a list of string (questions)")
else:
self.list_of_questions = list_of_questions
if (
(summary_model is None)
and (summary_vis_processors is None)
and (analysis_type != "questions")
):
self.summary_model, self.summary_vis_processors = self.load_model(
model_type=summary_model_type
)
else:
self.summary_model = summary_model
self.summary_vis_processors = summary_vis_processors
if (
(summary_vqa_model is None)
and (summary_vqa_vis_processors is None)
and (summary_vqa_txt_processors is None)
and (analysis_type != "summary")
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = self.load_vqa_model()
else:
self.summary_vqa_model = summary_vqa_model
self.summary_vqa_vis_processors = summary_vqa_vis_processors
self.summary_vqa_txt_processors = summary_vqa_txt_processors
def load_model_base(self):
"""
Load base_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="base_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model_large(self):
"""
Load large_coco blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
summary_model, summary_vis_processors, _ = load_model_and_preprocess(
name="blip_caption",
model_type="large_coco",
is_eval=True,
device=self.summary_device,
)
return summary_model, summary_vis_processors
def load_model(self, model_type: str):
"""
Load blip_caption model and preprocessors for visual inputs from lavis.models.
Args:
model_type (str): type of the model.
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
"""
select_model = {
"base": SummaryDetector.load_model_base,
"large": SummaryDetector.load_model_large,
}
summary_model, summary_vis_processors = select_model[model_type](self)
return summary_model, summary_vis_processors
def load_vqa_model(self):
"""
Load blip_vqa model and preprocessors for visual and text inputs from lavis.models.
Args:
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
(
summary_vqa_model,
summary_vqa_vis_processors,
summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
return summary_vqa_model, summary_vqa_vis_processors, summary_vqa_txt_processors
def analyse_image(self):
"""
Analyse image with blip_caption model.
Args:
Returns:
self.subdict (dict): dictionary with analysis results.
"""
if self.analysis_type == "summary_and_questions":
self.analyse_summary()
self.analyse_questions(self.list_of_questions)
elif self.analysis_type == "summary":
self.analyse_summary()
elif self.analysis_type == "questions":
self.analyse_questions(self.list_of_questions)
return self.subdict
def analyse_summary(self):
"""
Create 1 constant and 3 non deterministic captions for image.
Args:
Returns:
self.subdict (dict): dictionary with analysis results.
"""
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
self.summary_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
with no_grad():
self.subdict["const_image_summary"] = self.summary_model.generate(
{"image": image}
)[0]
self.subdict["3_non-deterministic summary"] = self.summary_model.generate(
{"image": image}, use_nucleus_sampling=True, num_captions=3
)
return self.subdict
def analyse_questions(self, list_of_questions: list[str]) -> dict:
"""
Generate answers to free-form questions about image written in natural language.
Args:
list_of_questions (list[str]): list of questions.
Returns:
self.subdict (dict): dictionary with answers to questions.
"""
if (
(self.summary_vqa_model is None)
and (self.summary_vqa_vis_processors is None)
and (self.summary_vqa_txt_processors is None)
):
(
self.summary_vqa_model,
self.summary_vqa_vis_processors,
self.summary_vqa_txt_processors,
) = load_model_and_preprocess(
name="blip_vqa",
model_type="vqav2",
is_eval=True,
device=self.summary_device,
)
if len(list_of_questions) > 0:
path = self.subdict["filename"]
raw_image = Image.open(path).convert("RGB")
image = (
self.summary_vqa_vis_processors["eval"](raw_image)
.unsqueeze(0)
.to(self.summary_device)
)
question_batch = []
for quest in list_of_questions:
question_batch.append(self.summary_vqa_txt_processors["eval"](quest))
batch_size = len(list_of_questions)
image_batch = image.repeat(batch_size, 1, 1, 1)
with no_grad():
answers_batch = self.summary_vqa_model.predict_answers(
samples={"image": image_batch, "text_input": question_batch},
inference_method="generate",
)
for q, a in zip(list_of_questions, answers_batch):
self.subdict[q] = a
else:
print("Please, enter list of questions")
return self.subdict