AMMICO/misinformation/display.py
xiaohemaikoo fdcb228294
M objdect (#23)
* colors expression by KMean algorithm

* object detection by imageai

* object detection by cvlib

* add encapsulation of object detection

* remove encapsulation of objdetect v0

* objects expression to dict

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* added imageai to requirements

* add objects to dictionary

* update for AnalysisMethod baseline

* add objects dection support explore_analysis display

* extend python version of misinf to allow imageai

* account for older python

* use global functionality for dict to csv convert

* update for docker build

* docker will build now but ipywidgets still not working

* test code

* include test data folder in repo

* add some sample images

* load cvs labels to dict

* add test data

* retrigger checks

* add map to human coding

* get orders from dict, missing dep

* add module to test accuracy

* retrigger checks

* retrigger checks

* now removing imageai

* removed imageai

* move labelmanager to analyse

* multiple faces in mydict

* fix pre-commit issues

* map mydict

* hide imageai

* objects default using cvlib, isolate and disable imageai

* correct python version

* refactor faces tests

* refactor objects tests

* sonarcloud issues

* refactor utils tests

* address code smells

* update readme

* update notebook without imageai

Co-authored-by: Ma Xianghe <825074348@qq.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: iulusoy <inga.ulusoy@uni-heidelberg.de>
2022-10-04 11:34:44 +02:00

71 строка
2.2 KiB
Python

import ipywidgets
from IPython.display import display
import misinformation.faces as faces
import misinformation.text as text
import misinformation.objects as objects
class JSONContainer:
"""Expose a Python dictionary as a JSON document in JupyterLab
rich display rendering.
"""
def __init__(self, data={}):
self._data = data
def _repr_json_(self):
return self._data
def explore_analysis(mydict, identify="faces"):
# dictionary mapping the type of analysis to be explored
identify_dict = {
"faces": faces.EmotionDetector,
"text-on-image": text.TextDetector,
"objects": objects.ObjectDetector,
}
# create a list containing the image ids for the widget
# image_paths = [mydict[key]["filename"] for key in mydict.keys()]
image_ids = [key for key in mydict.keys()]
# Create an image selector widget
image_select = ipywidgets.Select(
options=image_ids, layout=ipywidgets.Layout(width="20%"), rows=20
)
# Set up the facial recognition output widget
output = ipywidgets.Output(layout=ipywidgets.Layout(width="30%"))
# Set up the image selection and display widget
image_widget = ipywidgets.Box(
children=[],
layout=ipywidgets.Layout(width="50%"),
)
# Register the tab switch logic
def switch(_):
# Clear existing output
image_widget.children = ()
output.clear_output()
# Create the new content
image_widget.children = (
ipywidgets.Image.from_file(mydict[image_select.value]["filename"]),
)
# This output widget absorbes print statements that are messing with
# the widget output and cannot be disabled through the API.
with faces.NocatchOutput():
mydict[image_select.value] = identify_dict[identify](
mydict[image_select.value]
).analyse_image()
with output:
display(JSONContainer(mydict[image_select.value]))
# Register the handler and trigger it immediately
image_select.observe(switch, names=("value",), type="change")
switch(None)
# Show the combined widget
return ipywidgets.HBox([image_select, image_widget, output])