Этот коммит содержится в:
Daniel Ari Friedman 2025-02-07 13:55:09 -08:00
родитель ca645167d2
Коммит 4e0653b73b
3 изменённых файлов: 204 добавлений и 3 удалений

2
.obsidian/graph.json поставляемый
Просмотреть файл

@ -17,6 +17,6 @@
"repelStrength": 10,
"linkStrength": 1,
"linkDistance": 250,
"scale": 0.10124266675309304,
"scale": 0.07829474440680095,
"close": false
}

4
.obsidian/workspace.json поставляемый
Просмотреть файл

@ -185,6 +185,8 @@
},
"active": "283b4112120e60a0",
"lastOpenFiles": [
"Things/Baseball_Game/Baseball_Game.md",
"Things/Baseball_Game",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/top_level.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/entry_points.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/WHEEL",
@ -194,8 +196,6 @@
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/LICENSE.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/AUTHORS.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/INSTALLER",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info",
"Things/Path_Network/venv/bin/Activate.ps1",
"Things/Path_Network/output/20250207_134114/agent_height_variations.png",
"Things/Path_Network/output/20250207_134114/water_level_distribution.png",
"Things/Path_Network/output/20250207_134114/final_state.png",

201
Things/Baseball_Game/Baseball_Game.md Обычный файл
Просмотреть файл

@ -0,0 +1,201 @@
# Baseball Game Active Inference Simulation Manifesto
## Overview
This document outlines the theoretical framework and implementation strategy for modeling a baseball game using active inference principles. The simulation aims to capture the complex dynamics of baseball through the lens of free energy minimization and belief updating.
## Core Principles
### 1. Active Inference Framework
- Players and teams modeled as active inference agents
- Free energy minimization drives decision-making
- Hierarchical generative models represent game states
- Precision-weighted belief updating based on sensory evidence
- Action selection through expected free energy minimization
### 2. Multi-Agent System Architecture
#### Agents
1. **Players**
- Individual active inference models
- Position-specific priors and policies
- Continuous state-space representation
- Proprioceptive and exteroceptive modalities
2. **Teams**
- Collective active inference at team level
- Shared generative models
- Strategic coordination through belief alignment
- Hierarchical policy selection
3. **Umpires**
- Objective state observers
- Rule enforcement agents
- Precision modulators for game flow
### 3. State Space Representation
#### Physical States
- Ball position, velocity, and spin (6D state space)
- Player positions and orientations
- Field geometry and boundaries
- Weather conditions and environmental factors
#### Game States
- Inning structure
- Score tracking
- Count (balls/strikes)
- Base occupancy
- Game phase indicators
#### Mental States
- Player confidence levels
- Team momentum
- Strategic intentions
- Risk assessment metrics
### 4. Action Space
#### Player Actions
- Batting mechanics
- Pitching variations
- Fielding movements
- Base running decisions
#### Team Actions
- Defensive positioning
- Batting order optimization
- Pitching changes
- Strategic timeouts
### 5. Generative Models
#### Hierarchical Structure
1. **Low-level physics**
- Ball trajectories
- Collision dynamics
- Player movement physics
2. **Mid-level gameplay**
- Play outcomes
- Situation-specific strategies
- Performance statistics
3. **High-level strategy**
- Game flow
- Win probability
- Long-term planning
### 6. Learning and Adaptation
#### Model Parameters
- Prior beliefs updated through experience
- Precision parameters tuned dynamically
- Policy preferences refined by outcomes
- Skill development through practice
#### Team Dynamics
- Emergent strategies
- Role specialization
- Coordination patterns
- Adaptive responses
### 7. Implementation Strategy
#### Technical Architecture
1. **Simulation Engine**
- Physics-based core
- Event-driven architecture
- Real-time processing capability
- Modular component design
2. **Data Collection**
- State tracking
- Action logging
- Performance metrics
- Belief evolution
3. **Visualization**
- 3D rendering
- Statistical displays
- Belief visualization
- Decision trees
#### Development Phases
1. **Phase 1: Core Mechanics**
- Basic physics implementation
- Simple agent models
- Fundamental game rules
2. **Phase 2: Active Inference Integration**
- Generative model implementation
- Free energy computation
- Policy selection mechanisms
3. **Phase 3: Learning and Adaptation**
- Parameter updating
- Strategy evolution
- Performance optimization
4. **Phase 4: Advanced Features**
- Complex strategies
- Team dynamics
- Environmental factors
### 8. Research Objectives
#### Primary Goals
1. Demonstrate active inference in complex sports dynamics
2. Model emergent team strategies
3. Study skill acquisition and adaptation
4. Analyze decision-making under uncertainty
#### Applications
- Training and strategy development
- Player development systems
- Game outcome prediction
- Performance analysis
### 9. Evaluation Metrics
#### Performance Metrics
- Win-loss records
- Statistical accuracy
- Strategy effectiveness
- Learning efficiency
#### Model Metrics
- Free energy minimization
- Belief convergence
- Policy optimization
- Prediction accuracy
## Future Directions
### Extensions
1. Multi-game seasons
2. Player development trajectories
3. Team chemistry modeling
4. Injury and fatigue effects
### Integration Opportunities
1. Real game data validation
2. Machine learning hybridization
3. Virtual reality training
4. Strategic analysis tools
## Technical Requirements
### Software Stack
- Python-based simulation core
- Physics engine integration
- Neural network components
- Visualization toolkit
### Computing Resources
- GPU acceleration for physics
- Parallel processing for agents
- Real-time visualization
- Data storage and analysis
## Conclusion
This baseball simulation framework provides a comprehensive platform for studying active inference in complex sports environments, offering insights into both individual and team dynamics while maintaining computational tractability and practical applicability.