зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
Ending of the stream 010.1
Этот коммит содержится в:
родитель
ca645167d2
Коммит
4e0653b73b
2
.obsidian/graph.json
поставляемый
2
.obsidian/graph.json
поставляемый
@ -17,6 +17,6 @@
|
||||
"repelStrength": 10,
|
||||
"linkStrength": 1,
|
||||
"linkDistance": 250,
|
||||
"scale": 0.10124266675309304,
|
||||
"scale": 0.07829474440680095,
|
||||
"close": false
|
||||
}
|
||||
4
.obsidian/workspace.json
поставляемый
4
.obsidian/workspace.json
поставляемый
@ -185,6 +185,8 @@
|
||||
},
|
||||
"active": "283b4112120e60a0",
|
||||
"lastOpenFiles": [
|
||||
"Things/Baseball_Game/Baseball_Game.md",
|
||||
"Things/Baseball_Game",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/top_level.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/entry_points.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/WHEEL",
|
||||
@ -194,8 +196,6 @@
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/LICENSE.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/AUTHORS.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/INSTALLER",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info",
|
||||
"Things/Path_Network/venv/bin/Activate.ps1",
|
||||
"Things/Path_Network/output/20250207_134114/agent_height_variations.png",
|
||||
"Things/Path_Network/output/20250207_134114/water_level_distribution.png",
|
||||
"Things/Path_Network/output/20250207_134114/final_state.png",
|
||||
|
||||
201
Things/Baseball_Game/Baseball_Game.md
Обычный файл
201
Things/Baseball_Game/Baseball_Game.md
Обычный файл
@ -0,0 +1,201 @@
|
||||
# Baseball Game Active Inference Simulation Manifesto
|
||||
|
||||
## Overview
|
||||
This document outlines the theoretical framework and implementation strategy for modeling a baseball game using active inference principles. The simulation aims to capture the complex dynamics of baseball through the lens of free energy minimization and belief updating.
|
||||
|
||||
## Core Principles
|
||||
|
||||
### 1. Active Inference Framework
|
||||
- Players and teams modeled as active inference agents
|
||||
- Free energy minimization drives decision-making
|
||||
- Hierarchical generative models represent game states
|
||||
- Precision-weighted belief updating based on sensory evidence
|
||||
- Action selection through expected free energy minimization
|
||||
|
||||
### 2. Multi-Agent System Architecture
|
||||
|
||||
#### Agents
|
||||
1. **Players**
|
||||
- Individual active inference models
|
||||
- Position-specific priors and policies
|
||||
- Continuous state-space representation
|
||||
- Proprioceptive and exteroceptive modalities
|
||||
|
||||
2. **Teams**
|
||||
- Collective active inference at team level
|
||||
- Shared generative models
|
||||
- Strategic coordination through belief alignment
|
||||
- Hierarchical policy selection
|
||||
|
||||
3. **Umpires**
|
||||
- Objective state observers
|
||||
- Rule enforcement agents
|
||||
- Precision modulators for game flow
|
||||
|
||||
### 3. State Space Representation
|
||||
|
||||
#### Physical States
|
||||
- Ball position, velocity, and spin (6D state space)
|
||||
- Player positions and orientations
|
||||
- Field geometry and boundaries
|
||||
- Weather conditions and environmental factors
|
||||
|
||||
#### Game States
|
||||
- Inning structure
|
||||
- Score tracking
|
||||
- Count (balls/strikes)
|
||||
- Base occupancy
|
||||
- Game phase indicators
|
||||
|
||||
#### Mental States
|
||||
- Player confidence levels
|
||||
- Team momentum
|
||||
- Strategic intentions
|
||||
- Risk assessment metrics
|
||||
|
||||
### 4. Action Space
|
||||
|
||||
#### Player Actions
|
||||
- Batting mechanics
|
||||
- Pitching variations
|
||||
- Fielding movements
|
||||
- Base running decisions
|
||||
|
||||
#### Team Actions
|
||||
- Defensive positioning
|
||||
- Batting order optimization
|
||||
- Pitching changes
|
||||
- Strategic timeouts
|
||||
|
||||
### 5. Generative Models
|
||||
|
||||
#### Hierarchical Structure
|
||||
1. **Low-level physics**
|
||||
- Ball trajectories
|
||||
- Collision dynamics
|
||||
- Player movement physics
|
||||
|
||||
2. **Mid-level gameplay**
|
||||
- Play outcomes
|
||||
- Situation-specific strategies
|
||||
- Performance statistics
|
||||
|
||||
3. **High-level strategy**
|
||||
- Game flow
|
||||
- Win probability
|
||||
- Long-term planning
|
||||
|
||||
### 6. Learning and Adaptation
|
||||
|
||||
#### Model Parameters
|
||||
- Prior beliefs updated through experience
|
||||
- Precision parameters tuned dynamically
|
||||
- Policy preferences refined by outcomes
|
||||
- Skill development through practice
|
||||
|
||||
#### Team Dynamics
|
||||
- Emergent strategies
|
||||
- Role specialization
|
||||
- Coordination patterns
|
||||
- Adaptive responses
|
||||
|
||||
### 7. Implementation Strategy
|
||||
|
||||
#### Technical Architecture
|
||||
1. **Simulation Engine**
|
||||
- Physics-based core
|
||||
- Event-driven architecture
|
||||
- Real-time processing capability
|
||||
- Modular component design
|
||||
|
||||
2. **Data Collection**
|
||||
- State tracking
|
||||
- Action logging
|
||||
- Performance metrics
|
||||
- Belief evolution
|
||||
|
||||
3. **Visualization**
|
||||
- 3D rendering
|
||||
- Statistical displays
|
||||
- Belief visualization
|
||||
- Decision trees
|
||||
|
||||
#### Development Phases
|
||||
1. **Phase 1: Core Mechanics**
|
||||
- Basic physics implementation
|
||||
- Simple agent models
|
||||
- Fundamental game rules
|
||||
|
||||
2. **Phase 2: Active Inference Integration**
|
||||
- Generative model implementation
|
||||
- Free energy computation
|
||||
- Policy selection mechanisms
|
||||
|
||||
3. **Phase 3: Learning and Adaptation**
|
||||
- Parameter updating
|
||||
- Strategy evolution
|
||||
- Performance optimization
|
||||
|
||||
4. **Phase 4: Advanced Features**
|
||||
- Complex strategies
|
||||
- Team dynamics
|
||||
- Environmental factors
|
||||
|
||||
### 8. Research Objectives
|
||||
|
||||
#### Primary Goals
|
||||
1. Demonstrate active inference in complex sports dynamics
|
||||
2. Model emergent team strategies
|
||||
3. Study skill acquisition and adaptation
|
||||
4. Analyze decision-making under uncertainty
|
||||
|
||||
#### Applications
|
||||
- Training and strategy development
|
||||
- Player development systems
|
||||
- Game outcome prediction
|
||||
- Performance analysis
|
||||
|
||||
### 9. Evaluation Metrics
|
||||
|
||||
#### Performance Metrics
|
||||
- Win-loss records
|
||||
- Statistical accuracy
|
||||
- Strategy effectiveness
|
||||
- Learning efficiency
|
||||
|
||||
#### Model Metrics
|
||||
- Free energy minimization
|
||||
- Belief convergence
|
||||
- Policy optimization
|
||||
- Prediction accuracy
|
||||
|
||||
## Future Directions
|
||||
|
||||
### Extensions
|
||||
1. Multi-game seasons
|
||||
2. Player development trajectories
|
||||
3. Team chemistry modeling
|
||||
4. Injury and fatigue effects
|
||||
|
||||
### Integration Opportunities
|
||||
1. Real game data validation
|
||||
2. Machine learning hybridization
|
||||
3. Virtual reality training
|
||||
4. Strategic analysis tools
|
||||
|
||||
## Technical Requirements
|
||||
|
||||
### Software Stack
|
||||
- Python-based simulation core
|
||||
- Physics engine integration
|
||||
- Neural network components
|
||||
- Visualization toolkit
|
||||
|
||||
### Computing Resources
|
||||
- GPU acceleration for physics
|
||||
- Parallel processing for agents
|
||||
- Real-time visualization
|
||||
- Data storage and analysis
|
||||
|
||||
## Conclusion
|
||||
This baseball simulation framework provides a comprehensive platform for studying active inference in complex sports environments, offering insights into both individual and team dynamics while maintaining computational tractability and practical applicability.
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user