Cognitive Ecosystem Modeling Framework
A comprehensive framework for modeling cognitive ecosystems using active_inference, integrated with docs/guides/obsidian_linking for knowledge management.
Overview
This project combines cognitive modeling with knowledge management to create a powerful framework for:
- Modeling agent behaviors using active_inference
- Managing complex knowledge_organization
- Visualizing and analyzing knowledge_base/cognitive/cognitive_phenomena
- Simulating multi-agent interactions
Project Structure
See ai_folder_structure for comprehensive directory organization.
📁 docs/ # Documentation (See docs/guides/documentation_standards) 📁 tests/ # Test suite (See docs/guides/unit_testing) 📁 data/ # Data storage
Features
Knowledge Management
- docs/guides/obsidian_linking
- docs/guides/linking_completeness
- docs/templates/ai_concept_template
- docs/guides/ai_validation_framework
Cognitive Modeling
- knowledge_base/cognitive/active_inference
- knowledge_base/mathematics/belief_updating
- knowledge_base/cognitive/action_selection
- knowledge_base/cognitive/predictive_processing
Analysis & Visualization
- docs/tools/network_analysis
- docs/concepts/quality_metrics
- docs/tools/visualization
- docs/guides/simulation
Knowledge Integration Architecture
Bidirectional Knowledge Graph
The framework leverages docs/guides/obsidian_linking to create a living knowledge graph that:
- Enforces docs/guides/validation
- Enables docs/guides/ai_validation_framework of relationships
- Supports docs/guides/machine_learning of dependencies
- Facilitates docs/guides/research
Link Types and Semantics
See docs/guides/linking_completeness for comprehensive linking patterns.
-
Theoretical Dependencies
[[knowledge_base/mathematics/measure_theory]] → [[knowledge_base/mathematics/probability_theory]] → [[knowledge_base/cognitive/stochastic_processes]]- Enforces prerequisite knowledge
- Validates theoretical foundations
- Ensures consistent notation
-
Implementation Dependencies
[[knowledge_base/cognitive/active_inference]] → [[knowledge_base/mathematics/belief_updating]] → [[knowledge_base/cognitive/action_selection]]- Tracks computational requirements
- Maintains implementation consistency
- Documents design decisions
-
Validation Links
[[docs/guides/unit_testing]] → [[docs/guides/validation]] → [[docs/concepts/quality_metrics]]- Ensures rigorous testing
- Maintains quality standards
- Documents validation procedures
Meta-Programming Capabilities
Code Generation
def generate_model_code(spec_file: Path) -> str:
"""Generate implementation from specifications.
See [[docs/guides/ai_documentation_style]] for code generation patterns.
"""
# Parse markdown specifications
spec = parse_markdown_spec(spec_file)
# Extract probabilistic model
model = extract_probabilistic_model(spec)
# Generate implementation
return generate_implementation(model)
Validation Rules
def check_probabilistic_consistency():
"""Verify probabilistic consistency.
See [[docs/guides/validation]] for validation rules.
"""
# Check matrix constraints
verify_stochastic_matrices()
# Validate probability measures
verify_measure_consistency()
# Check inference specifications
verify_inference_methods()
Benefits
-
Theoretical Consistency
- docs/guides/ai_validation_framework of mathematical relationships
- Enforcement of probabilistic constraints
- Verification of implementation patterns
-
Learning Support
- docs/guides/research of concepts
- Clear dependency tracking
- Interactive knowledge discovery
-
Implementation Quality
- docs/guides/ai_documentation_style
- Consistent design patterns
- docs/guides/unit_testing
-
Documentation Integration