Daniel Ari Friedman 4fcb46908d Various Updates
2025-02-12 19:26:24 -08:00
2025-02-12 16:10:29 -08:00
2025-02-07 13:49:44 -08:00
2025-02-07 11:08:50 -08:00
2025-02-12 16:10:29 -08:00
2025-02-12 19:26:24 -08:00
2025-02-07 13:20:57 -08:00
2025-02-12 13:23:51 -08:00
2025-02-12 14:04:48 -08:00
2025-02-07 08:16:25 -08:00
2025-02-07 13:20:57 -08:00
2025-02-07 13:55:09 -08:00
2025-02-07 11:08:50 -08:00
2025-02-07 08:16:25 -08:00
2025-02-07 12:22:16 -08:00
2025-02-06 13:31:08 -08:00
2025-02-07 09:51:30 -08:00
2025-02-07 08:16:25 -08:00
2025-02-12 10:51:38 -08:00

Cognitive Ecosystem Modeling Framework

A comprehensive framework for modeling cognitive ecosystems using active_inference, integrated with docs/guides/obsidian_linking for knowledge management.

Overview

This project combines cognitive modeling with knowledge management to create a powerful framework for:

Project Structure

See ai_folder_structure for comprehensive directory organization.

📁 docs/ # Documentation (See docs/guides/documentation_standards) 📁 tests/ # Test suite (See docs/guides/unit_testing) 📁 data/ # Data storage

Features

Knowledge Management

Cognitive Modeling

Analysis & Visualization

Knowledge Integration Architecture

Bidirectional Knowledge Graph

The framework leverages docs/guides/obsidian_linking to create a living knowledge graph that:

See docs/guides/linking_completeness for comprehensive linking patterns.

  1. Theoretical Dependencies

    [[knowledge_base/mathematics/measure_theory]] → [[knowledge_base/mathematics/probability_theory]] → [[knowledge_base/cognitive/stochastic_processes]]
    
    • Enforces prerequisite knowledge
    • Validates theoretical foundations
    • Ensures consistent notation
  2. Implementation Dependencies

    [[knowledge_base/cognitive/active_inference]] → [[knowledge_base/mathematics/belief_updating]] → [[knowledge_base/cognitive/action_selection]]
    
    • Tracks computational requirements
    • Maintains implementation consistency
    • Documents design decisions
  3. Validation Links

    [[docs/guides/unit_testing]] → [[docs/guides/validation]] → [[docs/concepts/quality_metrics]]
    
    • Ensures rigorous testing
    • Maintains quality standards
    • Documents validation procedures

Meta-Programming Capabilities

Code Generation

def generate_model_code(spec_file: Path) -> str:
    """Generate implementation from specifications.
    See [[docs/guides/ai_documentation_style]] for code generation patterns.
    """
    # Parse markdown specifications
    spec = parse_markdown_spec(spec_file)
    
    # Extract probabilistic model
    model = extract_probabilistic_model(spec)
    
    # Generate implementation
    return generate_implementation(model)

Validation Rules

def check_probabilistic_consistency():
    """Verify probabilistic consistency.
    See [[docs/guides/validation]] for validation rules.
    """
    # Check matrix constraints
    verify_stochastic_matrices()
    
    # Validate probability measures
    verify_measure_consistency()
    
    # Check inference specifications
    verify_inference_methods()

Benefits

  1. Theoretical Consistency

  2. Learning Support

  3. Implementation Quality

  4. Documentation Integration

Описание
No description provided
Readme MIT 157 MiB
Languages
Python 99.5%
Shell 0.5%