зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-30 12:46:04 +02:00
384 строки
14 KiB
Python
384 строки
14 KiB
Python
"""
|
|
Intervention strategies for Earth Systems Active Inference.
|
|
Provides implementations for different intervention approaches and their selection.
|
|
"""
|
|
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from typing import Dict, List, Optional, Tuple, Union, Any
|
|
import numpy as np
|
|
|
|
from .earth_systems import (
|
|
SystemState, EcologicalState, ClimateState, HumanImpactState,
|
|
EarthSystemMetrics
|
|
)
|
|
|
|
@dataclass
|
|
class InterventionConstraints:
|
|
"""Constraints for intervention selection."""
|
|
resource_limits: Dict[str, float]
|
|
time_constraints: Dict[str, float]
|
|
spatial_bounds: Dict[str, List[float]]
|
|
social_constraints: Dict[str, Any]
|
|
ecological_thresholds: Dict[str, float]
|
|
|
|
@dataclass
|
|
class InterventionOutcome:
|
|
"""Predicted outcome of an intervention."""
|
|
state_change: SystemState
|
|
confidence: float
|
|
resource_usage: Dict[str, float]
|
|
timeline: Dict[str, float]
|
|
side_effects: Dict[str, float]
|
|
|
|
class InterventionStrategy(ABC):
|
|
"""Abstract base class for intervention strategies."""
|
|
|
|
@abstractmethod
|
|
def select_actions(self,
|
|
current_state: SystemState,
|
|
predictions: Dict[str, np.ndarray],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Select appropriate interventions."""
|
|
pass
|
|
|
|
@abstractmethod
|
|
def evaluate_outcome(self,
|
|
before: SystemState,
|
|
after: SystemState,
|
|
intervention: Dict[str, Any]) -> InterventionOutcome:
|
|
"""Evaluate intervention outcome."""
|
|
pass
|
|
|
|
class EcologicalRestoration(InterventionStrategy):
|
|
"""Ecological restoration intervention strategy."""
|
|
|
|
def __init__(self,
|
|
restoration_params: Dict[str, Any],
|
|
risk_tolerance: float = 0.3):
|
|
self.params = restoration_params
|
|
self.risk_tolerance = risk_tolerance
|
|
|
|
def select_actions(self,
|
|
current_state: SystemState,
|
|
predictions: Dict[str, np.ndarray],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Select restoration actions."""
|
|
actions = {}
|
|
|
|
# Assess ecological needs
|
|
biodiversity_needs = self._assess_biodiversity_needs(current_state)
|
|
soil_needs = self._assess_soil_needs(current_state)
|
|
water_needs = self._assess_water_needs(current_state)
|
|
|
|
# Prioritize interventions
|
|
priorities = self._prioritize_needs(
|
|
biodiversity_needs,
|
|
soil_needs,
|
|
water_needs,
|
|
constraints
|
|
)
|
|
|
|
# Select specific actions
|
|
for priority in priorities:
|
|
if priority == "biodiversity":
|
|
actions.update(self._plan_biodiversity_actions(
|
|
current_state, constraints
|
|
))
|
|
elif priority == "soil":
|
|
actions.update(self._plan_soil_actions(
|
|
current_state, constraints
|
|
))
|
|
elif priority == "water":
|
|
actions.update(self._plan_water_actions(
|
|
current_state, constraints
|
|
))
|
|
|
|
return actions
|
|
|
|
def evaluate_outcome(self,
|
|
before: SystemState,
|
|
after: SystemState,
|
|
intervention: Dict[str, Any]) -> InterventionOutcome:
|
|
"""Evaluate restoration outcome."""
|
|
# Calculate state changes
|
|
biodiversity_change = self._calculate_biodiversity_change(before, after)
|
|
soil_change = self._calculate_soil_change(before, after)
|
|
water_change = self._calculate_water_change(before, after)
|
|
|
|
# Assess confidence
|
|
confidence = self._assess_confidence(
|
|
before, after, intervention
|
|
)
|
|
|
|
# Calculate resource usage
|
|
resource_usage = self._calculate_resource_usage(intervention)
|
|
|
|
# Estimate timeline
|
|
timeline = self._estimate_timeline(intervention)
|
|
|
|
# Assess side effects
|
|
side_effects = self._assess_side_effects(before, after)
|
|
|
|
return InterventionOutcome(
|
|
state_change=after,
|
|
confidence=confidence,
|
|
resource_usage=resource_usage,
|
|
timeline=timeline,
|
|
side_effects=side_effects
|
|
)
|
|
|
|
def _assess_biodiversity_needs(self, state: SystemState) -> Dict[str, float]:
|
|
"""Assess biodiversity restoration needs."""
|
|
return {
|
|
"species_richness": 1.0 - np.mean(list(state.ecological.biodiversity.values())),
|
|
"habitat_quality": 1.0 - state.ecological.resilience.get("habitat", 0.0),
|
|
"connectivity": 1.0 - state.ecological.resilience.get("connectivity", 0.0)
|
|
}
|
|
|
|
def _assess_soil_needs(self, state: SystemState) -> Dict[str, float]:
|
|
"""Assess soil restoration needs."""
|
|
return {
|
|
"organic_matter": 1.0 - state.ecological.soil_health.get("organic_matter", 0.0),
|
|
"microbial_activity": 1.0 - state.ecological.soil_health.get("microbial", 0.0),
|
|
"structure": 1.0 - state.ecological.soil_health.get("structure", 0.0)
|
|
}
|
|
|
|
def _assess_water_needs(self, state: SystemState) -> Dict[str, float]:
|
|
"""Assess water system needs."""
|
|
return {
|
|
"quality": 1.0 - state.ecological.water_cycles.get("quality", 0.0),
|
|
"flow": 1.0 - state.ecological.water_cycles.get("flow", 0.0),
|
|
"retention": 1.0 - state.ecological.water_cycles.get("retention", 0.0)
|
|
}
|
|
|
|
class ClimateIntervention(InterventionStrategy):
|
|
"""Climate intervention strategy."""
|
|
|
|
def __init__(self,
|
|
climate_params: Dict[str, Any],
|
|
uncertainty_threshold: float = 0.2):
|
|
self.params = climate_params
|
|
self.uncertainty_threshold = uncertainty_threshold
|
|
|
|
def select_actions(self,
|
|
current_state: SystemState,
|
|
predictions: Dict[str, np.ndarray],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Select climate interventions."""
|
|
actions = {}
|
|
|
|
# Assess climate needs
|
|
temperature_needs = self._assess_temperature_needs(current_state)
|
|
carbon_needs = self._assess_carbon_needs(current_state)
|
|
water_needs = self._assess_water_needs(current_state)
|
|
|
|
# Check prediction uncertainties
|
|
uncertainties = self._calculate_uncertainties(predictions)
|
|
|
|
# Select interventions based on needs and uncertainties
|
|
if uncertainties["temperature"] < self.uncertainty_threshold:
|
|
actions.update(self._plan_temperature_actions(
|
|
temperature_needs, constraints
|
|
))
|
|
|
|
if uncertainties["carbon"] < self.uncertainty_threshold:
|
|
actions.update(self._plan_carbon_actions(
|
|
carbon_needs, constraints
|
|
))
|
|
|
|
if uncertainties["water"] < self.uncertainty_threshold:
|
|
actions.update(self._plan_water_actions(
|
|
water_needs, constraints
|
|
))
|
|
|
|
return actions
|
|
|
|
def evaluate_outcome(self,
|
|
before: SystemState,
|
|
after: SystemState,
|
|
intervention: Dict[str, Any]) -> InterventionOutcome:
|
|
"""Evaluate climate intervention outcome."""
|
|
# Calculate state changes
|
|
temperature_change = self._calculate_temperature_change(before, after)
|
|
carbon_change = self._calculate_carbon_change(before, after)
|
|
water_change = self._calculate_water_change(before, after)
|
|
|
|
# Assess confidence
|
|
confidence = self._assess_confidence(
|
|
before, after, intervention
|
|
)
|
|
|
|
# Calculate resource usage
|
|
resource_usage = self._calculate_resource_usage(intervention)
|
|
|
|
# Estimate timeline
|
|
timeline = self._estimate_timeline(intervention)
|
|
|
|
# Assess side effects
|
|
side_effects = self._assess_side_effects(before, after)
|
|
|
|
return InterventionOutcome(
|
|
state_change=after,
|
|
confidence=confidence,
|
|
resource_usage=resource_usage,
|
|
timeline=timeline,
|
|
side_effects=side_effects
|
|
)
|
|
|
|
class SocialIntervention(InterventionStrategy):
|
|
"""Social intervention strategy."""
|
|
|
|
def __init__(self,
|
|
social_params: Dict[str, Any],
|
|
community_threshold: float = 0.4):
|
|
self.params = social_params
|
|
self.community_threshold = community_threshold
|
|
|
|
def select_actions(self,
|
|
current_state: SystemState,
|
|
predictions: Dict[str, np.ndarray],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Select social interventions."""
|
|
actions = {}
|
|
|
|
# Assess social needs
|
|
community_needs = self._assess_community_needs(current_state)
|
|
education_needs = self._assess_education_needs(current_state)
|
|
policy_needs = self._assess_policy_needs(current_state)
|
|
|
|
# Check community readiness
|
|
readiness = self._assess_community_readiness(current_state)
|
|
|
|
# Select interventions based on needs and readiness
|
|
if readiness > self.community_threshold:
|
|
if community_needs["engagement"] > 0.5:
|
|
actions.update(self._plan_community_actions(
|
|
community_needs, constraints
|
|
))
|
|
|
|
if education_needs["awareness"] > 0.5:
|
|
actions.update(self._plan_education_actions(
|
|
education_needs, constraints
|
|
))
|
|
|
|
if policy_needs["reform"] > 0.5:
|
|
actions.update(self._plan_policy_actions(
|
|
policy_needs, constraints
|
|
))
|
|
|
|
return actions
|
|
|
|
def evaluate_outcome(self,
|
|
before: SystemState,
|
|
after: SystemState,
|
|
intervention: Dict[str, Any]) -> InterventionOutcome:
|
|
"""Evaluate social intervention outcome."""
|
|
# Calculate state changes
|
|
community_change = self._calculate_community_change(before, after)
|
|
education_change = self._calculate_education_change(before, after)
|
|
policy_change = self._calculate_policy_change(before, after)
|
|
|
|
# Assess confidence
|
|
confidence = self._assess_confidence(
|
|
before, after, intervention
|
|
)
|
|
|
|
# Calculate resource usage
|
|
resource_usage = self._calculate_resource_usage(intervention)
|
|
|
|
# Estimate timeline
|
|
timeline = self._estimate_timeline(intervention)
|
|
|
|
# Assess side effects
|
|
side_effects = self._assess_side_effects(before, after)
|
|
|
|
return InterventionOutcome(
|
|
state_change=after,
|
|
confidence=confidence,
|
|
resource_usage=resource_usage,
|
|
timeline=timeline,
|
|
side_effects=side_effects
|
|
)
|
|
|
|
class InterventionCoordinator:
|
|
"""Coordinates multiple intervention strategies."""
|
|
|
|
def __init__(self,
|
|
strategies: Dict[str, InterventionStrategy],
|
|
weights: Optional[Dict[str, float]] = None):
|
|
self.strategies = strategies
|
|
self.weights = weights or {k: 1.0 for k in strategies.keys()}
|
|
|
|
def select_interventions(self,
|
|
current_state: SystemState,
|
|
predictions: Dict[str, np.ndarray],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Select coordinated interventions."""
|
|
all_actions = {}
|
|
|
|
# Get actions from each strategy
|
|
for name, strategy in self.strategies.items():
|
|
actions = strategy.select_actions(
|
|
current_state, predictions, constraints
|
|
)
|
|
all_actions[name] = actions
|
|
|
|
# Resolve conflicts and synergies
|
|
coordinated_actions = self._resolve_conflicts(all_actions)
|
|
|
|
# Optimize resource allocation
|
|
optimized_actions = self._optimize_resources(
|
|
coordinated_actions, constraints
|
|
)
|
|
|
|
return optimized_actions
|
|
|
|
def evaluate_outcomes(self,
|
|
before: SystemState,
|
|
after: SystemState,
|
|
interventions: Dict[str, Any]) -> Dict[str, InterventionOutcome]:
|
|
"""Evaluate outcomes of all interventions."""
|
|
outcomes = {}
|
|
|
|
for name, strategy in self.strategies.items():
|
|
if name in interventions:
|
|
outcome = strategy.evaluate_outcome(
|
|
before, after, interventions[name]
|
|
)
|
|
outcomes[name] = outcome
|
|
|
|
return outcomes
|
|
|
|
def _resolve_conflicts(self,
|
|
actions: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:
|
|
"""Resolve conflicts between different interventions."""
|
|
resolved = {}
|
|
|
|
# Identify conflicts
|
|
conflicts = self._identify_conflicts(actions)
|
|
|
|
# Resolve each conflict
|
|
for conflict in conflicts:
|
|
resolution = self._resolve_conflict(
|
|
conflict, actions
|
|
)
|
|
resolved.update(resolution)
|
|
|
|
return resolved
|
|
|
|
def _optimize_resources(self,
|
|
actions: Dict[str, Any],
|
|
constraints: InterventionConstraints) -> Dict[str, Any]:
|
|
"""Optimize resource allocation across interventions."""
|
|
# Calculate resource requirements
|
|
requirements = self._calculate_requirements(actions)
|
|
|
|
# Check against constraints
|
|
if self._check_constraints(requirements, constraints):
|
|
return actions
|
|
|
|
# Optimize if constraints are exceeded
|
|
return self._optimize_allocation(
|
|
actions, requirements, constraints
|
|
) |