cognitive/Things/BioFirm/interventions.py
Daniel Ari Friedman 9de628ee16 Updates
2025-02-07 11:08:50 -08:00

384 строки
14 KiB
Python

"""
Intervention strategies for Earth Systems Active Inference.
Provides implementations for different intervention approaches and their selection.
"""
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
from .earth_systems import (
SystemState, EcologicalState, ClimateState, HumanImpactState,
EarthSystemMetrics
)
@dataclass
class InterventionConstraints:
"""Constraints for intervention selection."""
resource_limits: Dict[str, float]
time_constraints: Dict[str, float]
spatial_bounds: Dict[str, List[float]]
social_constraints: Dict[str, Any]
ecological_thresholds: Dict[str, float]
@dataclass
class InterventionOutcome:
"""Predicted outcome of an intervention."""
state_change: SystemState
confidence: float
resource_usage: Dict[str, float]
timeline: Dict[str, float]
side_effects: Dict[str, float]
class InterventionStrategy(ABC):
"""Abstract base class for intervention strategies."""
@abstractmethod
def select_actions(self,
current_state: SystemState,
predictions: Dict[str, np.ndarray],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Select appropriate interventions."""
pass
@abstractmethod
def evaluate_outcome(self,
before: SystemState,
after: SystemState,
intervention: Dict[str, Any]) -> InterventionOutcome:
"""Evaluate intervention outcome."""
pass
class EcologicalRestoration(InterventionStrategy):
"""Ecological restoration intervention strategy."""
def __init__(self,
restoration_params: Dict[str, Any],
risk_tolerance: float = 0.3):
self.params = restoration_params
self.risk_tolerance = risk_tolerance
def select_actions(self,
current_state: SystemState,
predictions: Dict[str, np.ndarray],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Select restoration actions."""
actions = {}
# Assess ecological needs
biodiversity_needs = self._assess_biodiversity_needs(current_state)
soil_needs = self._assess_soil_needs(current_state)
water_needs = self._assess_water_needs(current_state)
# Prioritize interventions
priorities = self._prioritize_needs(
biodiversity_needs,
soil_needs,
water_needs,
constraints
)
# Select specific actions
for priority in priorities:
if priority == "biodiversity":
actions.update(self._plan_biodiversity_actions(
current_state, constraints
))
elif priority == "soil":
actions.update(self._plan_soil_actions(
current_state, constraints
))
elif priority == "water":
actions.update(self._plan_water_actions(
current_state, constraints
))
return actions
def evaluate_outcome(self,
before: SystemState,
after: SystemState,
intervention: Dict[str, Any]) -> InterventionOutcome:
"""Evaluate restoration outcome."""
# Calculate state changes
biodiversity_change = self._calculate_biodiversity_change(before, after)
soil_change = self._calculate_soil_change(before, after)
water_change = self._calculate_water_change(before, after)
# Assess confidence
confidence = self._assess_confidence(
before, after, intervention
)
# Calculate resource usage
resource_usage = self._calculate_resource_usage(intervention)
# Estimate timeline
timeline = self._estimate_timeline(intervention)
# Assess side effects
side_effects = self._assess_side_effects(before, after)
return InterventionOutcome(
state_change=after,
confidence=confidence,
resource_usage=resource_usage,
timeline=timeline,
side_effects=side_effects
)
def _assess_biodiversity_needs(self, state: SystemState) -> Dict[str, float]:
"""Assess biodiversity restoration needs."""
return {
"species_richness": 1.0 - np.mean(list(state.ecological.biodiversity.values())),
"habitat_quality": 1.0 - state.ecological.resilience.get("habitat", 0.0),
"connectivity": 1.0 - state.ecological.resilience.get("connectivity", 0.0)
}
def _assess_soil_needs(self, state: SystemState) -> Dict[str, float]:
"""Assess soil restoration needs."""
return {
"organic_matter": 1.0 - state.ecological.soil_health.get("organic_matter", 0.0),
"microbial_activity": 1.0 - state.ecological.soil_health.get("microbial", 0.0),
"structure": 1.0 - state.ecological.soil_health.get("structure", 0.0)
}
def _assess_water_needs(self, state: SystemState) -> Dict[str, float]:
"""Assess water system needs."""
return {
"quality": 1.0 - state.ecological.water_cycles.get("quality", 0.0),
"flow": 1.0 - state.ecological.water_cycles.get("flow", 0.0),
"retention": 1.0 - state.ecological.water_cycles.get("retention", 0.0)
}
class ClimateIntervention(InterventionStrategy):
"""Climate intervention strategy."""
def __init__(self,
climate_params: Dict[str, Any],
uncertainty_threshold: float = 0.2):
self.params = climate_params
self.uncertainty_threshold = uncertainty_threshold
def select_actions(self,
current_state: SystemState,
predictions: Dict[str, np.ndarray],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Select climate interventions."""
actions = {}
# Assess climate needs
temperature_needs = self._assess_temperature_needs(current_state)
carbon_needs = self._assess_carbon_needs(current_state)
water_needs = self._assess_water_needs(current_state)
# Check prediction uncertainties
uncertainties = self._calculate_uncertainties(predictions)
# Select interventions based on needs and uncertainties
if uncertainties["temperature"] < self.uncertainty_threshold:
actions.update(self._plan_temperature_actions(
temperature_needs, constraints
))
if uncertainties["carbon"] < self.uncertainty_threshold:
actions.update(self._plan_carbon_actions(
carbon_needs, constraints
))
if uncertainties["water"] < self.uncertainty_threshold:
actions.update(self._plan_water_actions(
water_needs, constraints
))
return actions
def evaluate_outcome(self,
before: SystemState,
after: SystemState,
intervention: Dict[str, Any]) -> InterventionOutcome:
"""Evaluate climate intervention outcome."""
# Calculate state changes
temperature_change = self._calculate_temperature_change(before, after)
carbon_change = self._calculate_carbon_change(before, after)
water_change = self._calculate_water_change(before, after)
# Assess confidence
confidence = self._assess_confidence(
before, after, intervention
)
# Calculate resource usage
resource_usage = self._calculate_resource_usage(intervention)
# Estimate timeline
timeline = self._estimate_timeline(intervention)
# Assess side effects
side_effects = self._assess_side_effects(before, after)
return InterventionOutcome(
state_change=after,
confidence=confidence,
resource_usage=resource_usage,
timeline=timeline,
side_effects=side_effects
)
class SocialIntervention(InterventionStrategy):
"""Social intervention strategy."""
def __init__(self,
social_params: Dict[str, Any],
community_threshold: float = 0.4):
self.params = social_params
self.community_threshold = community_threshold
def select_actions(self,
current_state: SystemState,
predictions: Dict[str, np.ndarray],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Select social interventions."""
actions = {}
# Assess social needs
community_needs = self._assess_community_needs(current_state)
education_needs = self._assess_education_needs(current_state)
policy_needs = self._assess_policy_needs(current_state)
# Check community readiness
readiness = self._assess_community_readiness(current_state)
# Select interventions based on needs and readiness
if readiness > self.community_threshold:
if community_needs["engagement"] > 0.5:
actions.update(self._plan_community_actions(
community_needs, constraints
))
if education_needs["awareness"] > 0.5:
actions.update(self._plan_education_actions(
education_needs, constraints
))
if policy_needs["reform"] > 0.5:
actions.update(self._plan_policy_actions(
policy_needs, constraints
))
return actions
def evaluate_outcome(self,
before: SystemState,
after: SystemState,
intervention: Dict[str, Any]) -> InterventionOutcome:
"""Evaluate social intervention outcome."""
# Calculate state changes
community_change = self._calculate_community_change(before, after)
education_change = self._calculate_education_change(before, after)
policy_change = self._calculate_policy_change(before, after)
# Assess confidence
confidence = self._assess_confidence(
before, after, intervention
)
# Calculate resource usage
resource_usage = self._calculate_resource_usage(intervention)
# Estimate timeline
timeline = self._estimate_timeline(intervention)
# Assess side effects
side_effects = self._assess_side_effects(before, after)
return InterventionOutcome(
state_change=after,
confidence=confidence,
resource_usage=resource_usage,
timeline=timeline,
side_effects=side_effects
)
class InterventionCoordinator:
"""Coordinates multiple intervention strategies."""
def __init__(self,
strategies: Dict[str, InterventionStrategy],
weights: Optional[Dict[str, float]] = None):
self.strategies = strategies
self.weights = weights or {k: 1.0 for k in strategies.keys()}
def select_interventions(self,
current_state: SystemState,
predictions: Dict[str, np.ndarray],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Select coordinated interventions."""
all_actions = {}
# Get actions from each strategy
for name, strategy in self.strategies.items():
actions = strategy.select_actions(
current_state, predictions, constraints
)
all_actions[name] = actions
# Resolve conflicts and synergies
coordinated_actions = self._resolve_conflicts(all_actions)
# Optimize resource allocation
optimized_actions = self._optimize_resources(
coordinated_actions, constraints
)
return optimized_actions
def evaluate_outcomes(self,
before: SystemState,
after: SystemState,
interventions: Dict[str, Any]) -> Dict[str, InterventionOutcome]:
"""Evaluate outcomes of all interventions."""
outcomes = {}
for name, strategy in self.strategies.items():
if name in interventions:
outcome = strategy.evaluate_outcome(
before, after, interventions[name]
)
outcomes[name] = outcome
return outcomes
def _resolve_conflicts(self,
actions: Dict[str, Dict[str, Any]]) -> Dict[str, Any]:
"""Resolve conflicts between different interventions."""
resolved = {}
# Identify conflicts
conflicts = self._identify_conflicts(actions)
# Resolve each conflict
for conflict in conflicts:
resolution = self._resolve_conflict(
conflict, actions
)
resolved.update(resolution)
return resolved
def _optimize_resources(self,
actions: Dict[str, Any],
constraints: InterventionConstraints) -> Dict[str, Any]:
"""Optimize resource allocation across interventions."""
# Calculate resource requirements
requirements = self._calculate_requirements(actions)
# Check against constraints
if self._check_constraints(requirements, constraints):
return actions
# Optimize if constraints are exceeded
return self._optimize_allocation(
actions, requirements, constraints
)