Daniel Ari Friedman d30a2cc79e BioFirm
2025-02-11 09:04:09 -08:00

534 строки
19 KiB
Python

"""
Main BioFirm implementation.
Integrates all components for bioregional evaluation and stewardship.
"""
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
import yaml
from pathlib import Path
import logging
import time
import copy
import networkx as nx
from collections import defaultdict
from .core.state_spaces import StateSpace, BioregionalState
from .core.observation import (
ObservationModel, HierarchicalObservation, ObservationAggregator
)
from .core.transition import (
TransitionModel, HierarchicalTransition, EcologicalConstraints
)
from .core.stewardship import (
Intervention, StewardshipMetrics, StewardshipMode,
AdaptiveComanagement, BioregionalStewardship
)
from .visualization.plotting import BioregionalVisualization
logger = logging.getLogger(__name__)
class BioFirm:
"""Main BioFirm class for bioregional active inference."""
def __init__(self, config_path: Union[str, Path]):
"""
Initialize BioFirm framework.
Args:
config_path: Path to configuration file
"""
self.config = self._load_config(config_path)
self._setup_components()
self._initialize_state()
self.visualization = BioregionalVisualization()
def _load_config(self, config_path: Union[str, Path]) -> Dict:
"""Load configuration from file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
self._validate_config(config)
return config
except Exception as e:
logger.error(f"Error loading config: {str(e)}")
raise
def _validate_config(self, config: Dict) -> bool:
"""Validate configuration structure."""
required_sections = [
'system',
'state_spaces',
'observation',
'transition',
'stewardship',
'visualization'
]
for section in required_sections:
if section not in config:
raise ValueError(f"Missing required config section: {section}")
return True
def _setup_components(self):
"""Set up all framework components."""
# Set up state spaces
self.state_spaces = self._setup_state_spaces()
# Set up observation model
self.observation_model = self._setup_observation_model()
# Set up transition model
self.transition_model = self._setup_transition_model()
# Set up stewardship
self.stewardship = self._setup_stewardship()
def _setup_state_spaces(self) -> Dict[str, StateSpace]:
"""Set up state spaces for each scale."""
spaces = {}
for scale, config in self.config['state_spaces'].items():
spaces[scale] = StateSpace(
dimensions=config['dimensions'],
labels=config['labels'],
mappings=config['mappings'],
scale=scale
)
return spaces
def _setup_observation_model(self) -> HierarchicalObservation:
"""Set up hierarchical observation model."""
models = {}
for scale, config in self.config['observation'].items():
models[scale] = ObservationModel(
state_space=self.state_spaces[scale],
observation_space=StateSpace(**config['observation_space']),
likelihood_matrix=np.array(config['likelihood_matrix']),
noise_model=config.get('noise_model', 'gaussian'),
precision=config.get('precision', 1.0)
)
scale_couplings = {
tuple(k.split('_to_')): v
for k, v in self.config['observation']['couplings'].items()
}
return HierarchicalObservation(models, scale_couplings)
def _setup_transition_model(self) -> HierarchicalTransition:
"""Set up hierarchical transition model."""
models = {}
for scale, config in self.config['transition'].items():
models[scale] = TransitionModel(
state_space=self.state_spaces[scale],
action_space=StateSpace(**config['action_space']),
transition_matrices={
action: np.array(matrix)
for action, matrix in config['transition_matrices'].items()
},
temporal_horizon=config['temporal_horizon'],
control_modes=config.get('control_modes', ['homeostatic'])
)
scale_couplings = {
tuple(k.split('_to_')): v
for k, v in self.config['transition']['couplings'].items()
}
return HierarchicalTransition(models, scale_couplings)
def _setup_stewardship(self) -> BioregionalStewardship:
"""Set up stewardship framework."""
config = self.config['stewardship']
# Create stewardship mode
mode = AdaptiveComanagement(
stakeholder_weights=config['stakeholder_weights'],
learning_rate=config.get('learning_rate', 0.1)
)
return BioregionalStewardship(
observation_model=self.observation_model,
transition_model=self.transition_model,
stewardship_mode=mode
)
def _initialize_state(self):
"""Initialize system state."""
self.current_states = {}
self.target_states = {}
for scale, config in self.config['system']['initial_states'].items():
self.current_states[scale] = BioregionalState(**config)
for scale, config in self.config['system']['target_states'].items():
self.target_states[scale] = BioregionalState(**config)
def evaluate_system(self) -> Dict[str, float]:
"""Evaluate current system state."""
return self.stewardship.evaluate_system(
self.current_states,
self.target_states
)
def plan_interventions(self,
constraints: Optional[Dict[str, Any]] = None
) -> Dict[str, List[Intervention]]:
"""Plan interventions across scales."""
if constraints is None:
constraints = self.config['stewardship']['default_constraints']
return self.stewardship.plan_interventions(
self.current_states,
constraints
)
def apply_intervention(self,
intervention: Intervention,
scale: str) -> BioregionalState:
"""Apply intervention and update state."""
# Get current state
current_state = self.current_states[scale]
# Predict next state
next_state = self.transition_model.models[scale].predict_next_state(
current_state,
intervention.type
)
# Apply ecological constraints
constraints = EcologicalConstraints(
self.config['system']['ecological_constraints']
)
constrained_state = constraints.apply_constraints(next_state)
# Update current state
self.current_states[scale] = constrained_state
# Update metrics
self.stewardship.update_metrics(
self.current_states,
{scale: [intervention]}
)
return constrained_state
def visualize_state(self,
time_series: Optional[np.ndarray] = None,
scale: Optional[str] = None):
"""Visualize system state."""
if scale is None:
scale = list(self.current_states.keys())[0]
return self.visualization.plot_system_state(
self.current_states[scale],
time_series
)
def visualize_intervention(self,
before_state: BioregionalState,
after_state: BioregionalState,
intervention: Intervention):
"""Visualize intervention impacts."""
return self.visualization.plot_intervention_impacts(
before_state,
after_state,
intervention.__dict__
)
def visualize_cross_scale(self,
states: Optional[Dict[str, np.ndarray]] = None):
"""Visualize cross-scale dynamics."""
if states is None:
states = {
scale: np.array([state.to_vector()])
for scale, state in self.current_states.items()
}
scales = list(states.keys())
interactions = np.array([
[self.transition_model.scale_couplings.get(
(scale1, scale2), 0.0
) for scale2 in scales]
for scale1 in scales
])
return self.visualization.plot_cross_scale_dynamics(
states, scales, interactions
)
class HierarchicalProcessor:
"""Implements hierarchical processing across scales"""
def __init__(self, scales: List[str]):
self.scales = scales
self.processors = {
scale: ScaleProcessor(scale) for scale in scales
}
self.couplings = self._initialize_couplings()
def _initialize_couplings(self) -> Dict[Tuple[str, str], float]:
"""Initialize cross-scale coupling strengths"""
return {
(scale1, scale2): self._compute_coupling(scale1, scale2)
for scale1 in self.scales
for scale2 in self.scales
if scale1 != scale2
}
def _compute_coupling(self, scale1: str, scale2: str) -> float:
"""Compute coupling strength between scales"""
# Implementation based on scale relationship
pass
def _get_messages(self,
scale: str,
beliefs: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]:
"""Get messages from other scales"""
messages = {}
for other_scale in self.scales:
if other_scale != scale:
messages[other_scale] = self._compute_message(
scale, other_scale, beliefs.get(other_scale)
)
return messages
def process_hierarchy(self,
observations: Dict[str, np.ndarray]
) -> Dict[str, np.ndarray]:
"""Process observations across hierarchical levels"""
beliefs = {}
for scale in self.scales:
beliefs[scale] = self.processors[scale].update_beliefs(
observations[scale],
self._get_messages(scale, beliefs)
)
return beliefs
class BeliefPropagator:
"""Implements belief propagation across network"""
def __init__(self, network: nx.Graph):
self.network = network
self.messages = defaultdict(dict)
self.convergence_threshold = 1e-6
def _update_messages(self):
"""Update messages between nodes"""
new_messages = defaultdict(dict)
for node in self.network.nodes():
for neighbor in self.network.neighbors(node):
new_messages[node][neighbor] = self._compute_message(
node, neighbor
)
self.messages = new_messages
def _update_beliefs(self):
"""Update node beliefs based on messages"""
for node in self.network.nodes():
self.network.nodes[node]['belief'] = self._compute_belief(node)
def _check_convergence(self) -> bool:
"""Check if belief propagation has converged"""
# Implementation of convergence check
pass
def propagate_beliefs(self,
initial_beliefs: Dict[str, np.ndarray],
max_iterations: int = 100):
"""Propagate beliefs through network"""
self._initialize_beliefs(initial_beliefs)
for iteration in range(max_iterations):
self._update_messages()
self._update_beliefs()
if self._check_convergence():
logger.info(f"Converged after {iteration + 1} iterations")
break
return self._get_final_beliefs()
class AdaptiveController:
"""Implements adaptive control mechanisms"""
def __init__(self,
control_params: Dict[str, Any],
learning_rate: float = 0.01):
self.params = control_params
self.learning_rate = learning_rate
self.history = []
def _compute_gradient(self,
performance: PerformanceMetrics) -> Dict[str, np.ndarray]:
"""Compute gradient for parameter updates"""
gradients = {}
for param_name, param_value in self.params.items():
gradients[param_name] = self._estimate_gradient(
param_name, param_value, performance
)
return gradients
def _update_params(self, gradient: Dict[str, np.ndarray]):
"""Update control parameters using gradient"""
for param_name, grad in gradient.items():
self.params[param_name] -= self.learning_rate * grad
def _store_adaptation(self, context: SystemContext):
"""Store adaptation history"""
self.history.append({
'timestamp': context.timestamp,
'params': copy.deepcopy(self.params),
'context': context.to_dict()
})
def adapt_control(self,
performance: PerformanceMetrics,
context: SystemContext):
"""Adapt control parameters based on performance"""
gradient = self._compute_gradient(performance)
self._update_params(gradient)
self._store_adaptation(context)
return self.params
class MetaLearner:
"""Implements meta-learning capabilities"""
def __init__(self,
base_learners: List[BaseLearner],
meta_params: Dict[str, Any]):
self.learners = base_learners
self.meta_params = meta_params
self.meta_model = self._initialize_meta_model()
def _compute_meta_gradient(self,
experience: Experience) -> Dict[str, np.ndarray]:
"""Compute meta-learning gradients"""
# Implementation of meta-gradient computation
pass
def _update_meta_params(self,
gradient: Dict[str, np.ndarray]):
"""Update meta-learning parameters"""
# Implementation of meta-parameter updates
pass
def _adapt_learners(self,
performance: Dict[str, float]):
"""Adapt base learners using meta-knowledge"""
# Implementation of learner adaptation
pass
def meta_update(self,
experience: Experience,
performance: Dict[str, float]):
"""Update meta-learning parameters"""
meta_gradient = self._compute_meta_gradient(experience)
self._update_meta_params(meta_gradient)
self._adapt_learners(performance)
return self.meta_params
class StateManager:
"""Manages bioregional state transitions"""
def __init__(self,
state_config: Dict[str, Any],
constraints: List[Constraint]):
self.config = state_config
self.constraints = constraints
self.state_history = []
def _compute_next_state(self,
current_state: BioregionalState,
action: Action) -> BioregionalState:
"""Compute next state based on current state and action"""
# Implementation of state transition
pass
def _apply_constraints(self,
proposed_state: BioregionalState) -> BioregionalState:
"""Apply constraints to proposed state"""
valid_state = proposed_state
for constraint in self.constraints:
valid_state = constraint.apply(valid_state)
return valid_state
def _record_transition(self,
current_state: BioregionalState,
action: Action,
next_state: BioregionalState):
"""Record state transition"""
self.state_history.append({
'timestamp': time.time(),
'current_state': current_state.to_dict(),
'action': action.to_dict(),
'next_state': next_state.to_dict()
})
def transition_state(self,
current_state: BioregionalState,
action: Action) -> BioregionalState:
"""Execute state transition with constraints"""
proposed_state = self._compute_next_state(current_state, action)
valid_state = self._apply_constraints(proposed_state)
self._record_transition(current_state, action, valid_state)
return valid_state
class ObservationProcessor:
"""Processes multi-scale observations"""
def __init__(self,
observation_models: Dict[str, ObservationModel],
aggregator: ObservationAggregator):
self.models = observation_models
self.aggregator = aggregator
def process_observations(self,
raw_observations: Dict[str, np.ndarray],
uncertainty: Dict[str, float]) -> Dict[str, np.ndarray]:
"""Process and aggregate observations"""
processed = {
scale: model.process(obs, uncertainty[scale])
for scale, (obs, model) in zip(
raw_observations.items(),
self.models.items()
)
}
return self.aggregator.aggregate(processed)
class InterventionPlanner:
"""Plans multi-scale interventions"""
def __init__(self,
planning_horizon: int,
objective_weights: Dict[str, float]):
self.horizon = planning_horizon
self.weights = objective_weights
self.planner = self._initialize_planner()
def _compute_objectives(self,
current_state: BioregionalState) -> Dict[str, float]:
"""Compute objective values for current state"""
# Implementation of objective computation
pass
def _validate_plan(self,
plan: List[Intervention]) -> List[Intervention]:
"""Validate and adjust intervention plan"""
# Implementation of plan validation
pass
def plan_interventions(self,
current_state: BioregionalState,
constraints: Dict[str, Any]) -> List[Intervention]:
"""Generate intervention plan"""
objectives = self._compute_objectives(current_state)
plan = self.planner.optimize(objectives, constraints)
return self._validate_plan(plan)