зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 20:26:04 +02:00
BioFirm
Этот коммит содержится в:
родитель
4e0653b73b
Коммит
58c8260224
3
.obsidian/appearance.json
поставляемый
3
.obsidian/appearance.json
поставляемый
@ -1,3 +1,4 @@
|
||||
{
|
||||
"accentColor": "#ff0000"
|
||||
"accentColor": "#ff0000",
|
||||
"theme": "obsidian"
|
||||
}
|
||||
8
.obsidian/graph.json
поставляемый
8
.obsidian/graph.json
поставляемый
@ -1,11 +1,11 @@
|
||||
{
|
||||
"collapse-filter": false,
|
||||
"search": "",
|
||||
"collapse-filter": true,
|
||||
"search": "Biofirm",
|
||||
"showTags": false,
|
||||
"showAttachments": false,
|
||||
"hideUnresolved": false,
|
||||
"showOrphans": true,
|
||||
"collapse-color-groups": true,
|
||||
"collapse-color-groups": false,
|
||||
"colorGroups": [],
|
||||
"collapse-display": true,
|
||||
"showArrow": false,
|
||||
@ -17,6 +17,6 @@
|
||||
"repelStrength": 10,
|
||||
"linkStrength": 1,
|
||||
"linkDistance": 250,
|
||||
"scale": 0.07829474440680095,
|
||||
"scale": 0.8918260730087173,
|
||||
"close": false
|
||||
}
|
||||
30
.obsidian/workspace.json
поставляемый
30
.obsidian/workspace.json
поставляемый
@ -6,7 +6,7 @@
|
||||
{
|
||||
"id": "dea337cf76935a08",
|
||||
"type": "tabs",
|
||||
"dimension": 37.73006134969325,
|
||||
"dimension": 41.69769173492182,
|
||||
"children": [
|
||||
{
|
||||
"id": "0ba8a1b9b9dd949a",
|
||||
@ -14,12 +14,12 @@
|
||||
"state": {
|
||||
"type": "markdown",
|
||||
"state": {
|
||||
"file": "Things/Continuous_Generic/Continuous_Generic_README.md",
|
||||
"file": "knowledge_base/systems/Adaptive Comanagement.md",
|
||||
"mode": "source",
|
||||
"source": false
|
||||
},
|
||||
"icon": "lucide-file",
|
||||
"title": "Continuous_Generic_README"
|
||||
"title": "Adaptive Comanagement"
|
||||
}
|
||||
}
|
||||
]
|
||||
@ -27,7 +27,7 @@
|
||||
{
|
||||
"id": "99b33ec97f002ea4",
|
||||
"type": "tabs",
|
||||
"dimension": 62.26993865030674,
|
||||
"dimension": 58.30230826507818,
|
||||
"children": [
|
||||
{
|
||||
"id": "283b4112120e60a0",
|
||||
@ -183,8 +183,17 @@
|
||||
"command-palette:Open command palette": false
|
||||
}
|
||||
},
|
||||
"active": "283b4112120e60a0",
|
||||
"active": "b3ae48a59c7d14cd",
|
||||
"lastOpenFiles": [
|
||||
"src/models/active_inference/docs/BioFirm/biofirm_schema.md",
|
||||
"knowledge_base/systems/Adaptive Comanagement.md",
|
||||
"knowledge_base/systems/Resilience Thinking.md",
|
||||
"knowledge_base/systems/Social-Ecological Systems.md",
|
||||
"knowledge_base/systems/Traditional Ecological Knowledge.md",
|
||||
"knowledge_base/systems/Bioregional Stewardship Theory.md",
|
||||
"Things/Continuous_Generic/Continuous_Generic_README.md",
|
||||
"src/models/active_inference/docs/biofirm_schema.md",
|
||||
"src/models/active_inference/docs/BioFirm",
|
||||
"Things/Baseball_Game/Baseball_Game.md",
|
||||
"Things/Baseball_Game",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/top_level.txt",
|
||||
@ -195,7 +204,6 @@
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/METADATA",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/LICENSE.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/AUTHORS.txt",
|
||||
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/INSTALLER",
|
||||
"Things/Path_Network/output/20250207_134114/agent_height_variations.png",
|
||||
"Things/Path_Network/output/20250207_134114/water_level_distribution.png",
|
||||
"Things/Path_Network/output/20250207_134114/final_state.png",
|
||||
@ -207,12 +215,10 @@
|
||||
"Things/Path_Network/README.md",
|
||||
"Things/Path_Network/Path_Network_README.md",
|
||||
"Things/BioFirm/BioFirm_README.md",
|
||||
"Things/Continuous_Generic/Continuous_Generic_README.md",
|
||||
"Output/tests/visualization/detailed_summary.png",
|
||||
"Output/tests/visualization/summary.png",
|
||||
"knowledge_base/cognitive/continuous_time_active_inference.md",
|
||||
"Things/Generic_POMDP/Generic_POMDP_README.md",
|
||||
"src/models/active_inference/docs/biofirm_schema.md",
|
||||
"knowledge_base/agents/GenericPOMDP/matrices/A_matrix.md",
|
||||
"knowledge_base/agents/GenericPOMDP/state_spaces/s_space.md",
|
||||
"src/models/active_inference/docs/active_inference_dispatcher.md",
|
||||
@ -225,12 +231,6 @@
|
||||
"knowledge_base/agents/GenericPOMDP/guides/a_space_enthusiast.md",
|
||||
"knowledge_base/mathematics/information_gain.md",
|
||||
"knowledge_base/agents/GenericPOMDP/guides/b_matrix_enthusiast.md",
|
||||
"knowledge_base/agents/GenericPOMDP/guides/o_space_enthusiast.md",
|
||||
"knowledge_base/agents/GenericPOMDP/guides/b_matrix_basics.md",
|
||||
"knowledge_base/mathematics/free_energy.md",
|
||||
"knowledge_base/mathematics/expected_free_energy.md",
|
||||
"knowledge_base/mathematics/active_inference_pomdp.md",
|
||||
"knowledge_base/mathematics/compute_efe.md",
|
||||
"knowledge_base/mathematics/belief_updating.md"
|
||||
"knowledge_base/agents/GenericPOMDP/guides/o_space_enthusiast.md"
|
||||
]
|
||||
}
|
||||
0
knowledge_base/systems/Adaptive Comanagement.md
Обычный файл
0
knowledge_base/systems/Adaptive Comanagement.md
Обычный файл
0
knowledge_base/systems/Resilience Thinking.md
Обычный файл
0
knowledge_base/systems/Resilience Thinking.md
Обычный файл
356
src/models/active_inference/docs/BioFirm/biofirm_schema.md
Обычный файл
356
src/models/active_inference/docs/BioFirm/biofirm_schema.md
Обычный файл
@ -0,0 +1,356 @@
|
||||
# BioFirm Active Inference Schema
|
||||
|
||||
## Core Abstractions
|
||||
|
||||
### [[State Space Abstraction]]
|
||||
```python
|
||||
@dataclass
|
||||
class StateSpace:
|
||||
"""Abstract representation of state spaces in active inference models."""
|
||||
dimensions: List[int]
|
||||
labels: Dict[str, List[str]]
|
||||
mappings: Dict[str, np.ndarray]
|
||||
hierarchical_levels: Optional[int] = 1
|
||||
scale: Optional[str] = None # spatial scale of the state space
|
||||
temporal_resolution: Optional[str] = None # temporal resolution
|
||||
```
|
||||
|
||||
### [[Bioregional State Space]]
|
||||
```python
|
||||
@dataclass
|
||||
class BioregionalState:
|
||||
"""Comprehensive bioregional state representation."""
|
||||
ecological_state: Dict[str, float] = field(default_factory=lambda: {
|
||||
"biodiversity": 0.0,
|
||||
"habitat_connectivity": 0.0,
|
||||
"ecosystem_services": 0.0,
|
||||
"species_richness": 0.0,
|
||||
"ecological_integrity": 0.0
|
||||
})
|
||||
|
||||
climate_state: Dict[str, float] = field(default_factory=lambda: {
|
||||
"temperature": 0.0,
|
||||
"precipitation": 0.0,
|
||||
"carbon_storage": 0.0,
|
||||
"albedo": 0.0,
|
||||
"extreme_events": 0.0
|
||||
})
|
||||
|
||||
social_state: Dict[str, float] = field(default_factory=lambda: {
|
||||
"community_engagement": 0.0,
|
||||
"traditional_knowledge": 0.0,
|
||||
"stewardship_practices": 0.0,
|
||||
"resource_governance": 0.0,
|
||||
"social_resilience": 0.0
|
||||
})
|
||||
|
||||
economic_state: Dict[str, float] = field(default_factory=lambda: {
|
||||
"sustainable_livelihoods": 0.0,
|
||||
"circular_economy": 0.0,
|
||||
"ecosystem_valuation": 0.0,
|
||||
"green_infrastructure": 0.0,
|
||||
"resource_efficiency": 0.0
|
||||
})
|
||||
```
|
||||
|
||||
### [[Observation Model]]
|
||||
```python
|
||||
@dataclass
|
||||
class ObservationModel:
|
||||
"""Generalized observation model for active inference."""
|
||||
state_space: StateSpace
|
||||
observation_space: StateSpace
|
||||
likelihood_matrix: np.ndarray # A matrix
|
||||
noise_model: str = "gaussian"
|
||||
precision: float = 1.0
|
||||
```
|
||||
|
||||
### [[Transition Model]]
|
||||
```python
|
||||
@dataclass
|
||||
class TransitionModel:
|
||||
"""Dynamic transition model for state evolution."""
|
||||
state_space: StateSpace
|
||||
action_space: StateSpace
|
||||
transition_matrices: Dict[str, np.ndarray] # B matrices
|
||||
temporal_horizon: int
|
||||
control_modes: List[str] = ["homeostatic", "goal_directed", "exploratory"]
|
||||
```
|
||||
|
||||
## Homeostatic Control Framework
|
||||
|
||||
### 1. [[System Definition]]
|
||||
|
||||
```yaml
|
||||
system:
|
||||
name: "BioFirm"
|
||||
type: "bioregional_stewardship"
|
||||
|
||||
state_spaces:
|
||||
bioregional:
|
||||
dimensions: [20] # Combined dimensions from ecological, climate, social, economic states
|
||||
type: "continuous"
|
||||
bounds: [0.0, 1.0]
|
||||
scales: ["local", "landscape", "regional", "bioregional"]
|
||||
|
||||
observation:
|
||||
dimensions: [5] # [CRITICAL, POOR, FAIR, GOOD, EXCELLENT]
|
||||
type: "ordinal"
|
||||
mapping: "probabilistic"
|
||||
uncertainty: "heteroscedastic"
|
||||
|
||||
action:
|
||||
dimensions: [4] # [PROTECT, RESTORE, ENHANCE, TRANSFORM]
|
||||
type: "discrete"
|
||||
constraints: "nested"
|
||||
coupling: "cross_scale"
|
||||
|
||||
control_parameters:
|
||||
temporal_horizon: 20
|
||||
precision_init: 1.0
|
||||
learning_rate: 0.01
|
||||
exploration_weight: 0.3
|
||||
adaptation_rate: 0.05
|
||||
cross_scale_coupling: 0.4
|
||||
```
|
||||
|
||||
### 2. [[Inference Configuration]]
|
||||
|
||||
```yaml
|
||||
inference:
|
||||
method: "variational" # or "sampling", "mean_field"
|
||||
policy_type: "discrete"
|
||||
|
||||
variational_parameters:
|
||||
free_energy_type: "expected"
|
||||
inference_iterations: 10
|
||||
convergence_threshold: 1e-6
|
||||
|
||||
belief_initialization:
|
||||
type: "uniform"
|
||||
prior_strength: 1.0
|
||||
|
||||
precision_dynamics:
|
||||
update_rule: "adaptive"
|
||||
learning_rate: 0.1
|
||||
bounds: [0.1, 10.0]
|
||||
```
|
||||
|
||||
### 3. [[Matrix Specifications]]
|
||||
|
||||
```yaml
|
||||
matrices:
|
||||
observation_model: # A Matrix
|
||||
type: "hierarchical_probabilistic"
|
||||
normalization: "hierarchical"
|
||||
sparsity: "block_structured"
|
||||
initialization: "informed_ecological"
|
||||
|
||||
transition_model: # B Matrix
|
||||
type: "coupled_markov"
|
||||
constraints: "mass_energy_conservation"
|
||||
symmetry: "ecological_networks"
|
||||
initialization: "ecosystem_based"
|
||||
|
||||
preference_model: # C Matrix
|
||||
type: "multi_objective"
|
||||
target_states:
|
||||
ecological: "GOOD"
|
||||
social: "FAIR"
|
||||
economic: "SUSTAINABLE"
|
||||
weights:
|
||||
ecological: 0.4
|
||||
social: 0.3
|
||||
economic: 0.3
|
||||
|
||||
prior_beliefs: # D Matrix
|
||||
type: "hierarchical_distribution"
|
||||
initialization: "expert_informed"
|
||||
update_rule: "bayesian_ecological"
|
||||
```
|
||||
|
||||
## Analysis Framework
|
||||
|
||||
### 1. [[Performance Metrics]]
|
||||
```python
|
||||
@dataclass
|
||||
class BioregionalMetrics:
|
||||
"""Comprehensive bioregional performance tracking."""
|
||||
ecological_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"biodiversity_index": 0.0,
|
||||
"ecosystem_health": 0.0,
|
||||
"habitat_connectivity": 0.0,
|
||||
"species_persistence": 0.0,
|
||||
"ecological_resilience": 0.0
|
||||
})
|
||||
|
||||
climate_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"carbon_sequestration": 0.0,
|
||||
"water_regulation": 0.0,
|
||||
"microclimate_stability": 0.0,
|
||||
"extreme_event_buffer": 0.0
|
||||
})
|
||||
|
||||
social_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"community_participation": 0.0,
|
||||
"knowledge_integration": 0.0,
|
||||
"cultural_preservation": 0.0,
|
||||
"governance_effectiveness": 0.0
|
||||
})
|
||||
|
||||
economic_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"sustainable_value": 0.0,
|
||||
"resource_efficiency": 0.0,
|
||||
"green_jobs": 0.0,
|
||||
"ecosystem_services_value": 0.0
|
||||
})
|
||||
|
||||
stewardship_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"management_effectiveness": 0.0,
|
||||
"stakeholder_engagement": 0.0,
|
||||
"adaptive_capacity": 0.0,
|
||||
"cross_scale_coordination": 0.0
|
||||
})
|
||||
```
|
||||
|
||||
### 2. [[Visualization Suite]]
|
||||
```python
|
||||
class BioregionalVisualization:
|
||||
"""Comprehensive bioregional visualization tools."""
|
||||
|
||||
@staticmethod
|
||||
def plot_system_state(
|
||||
bioregional_state: BioregionalState,
|
||||
time_series: np.ndarray
|
||||
) -> plt.Figure:
|
||||
"""Visualize multi-dimensional system state."""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def plot_intervention_impacts(
|
||||
before_state: BioregionalState,
|
||||
after_state: BioregionalState,
|
||||
intervention_data: Dict[str, Any]
|
||||
) -> plt.Figure:
|
||||
"""Visualize intervention outcomes."""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def plot_cross_scale_dynamics(
|
||||
states: Dict[str, np.ndarray],
|
||||
scales: List[str],
|
||||
interactions: np.ndarray
|
||||
) -> plt.Figure:
|
||||
"""Visualize cross-scale ecological dynamics."""
|
||||
pass
|
||||
```
|
||||
|
||||
## Extension Points
|
||||
|
||||
### 1. [[Stewardship Modes]]
|
||||
```python
|
||||
class StewardshipMode(ABC):
|
||||
"""Abstract base class for stewardship modes."""
|
||||
|
||||
@abstractmethod
|
||||
def evaluate_state(self,
|
||||
current_state: BioregionalState,
|
||||
target_state: BioregionalState) -> float:
|
||||
"""Evaluate current state against stewardship goals."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def propose_interventions(self,
|
||||
state: BioregionalState,
|
||||
constraints: Dict[str, Any]) -> List[Intervention]:
|
||||
"""Propose context-appropriate interventions."""
|
||||
pass
|
||||
```
|
||||
|
||||
### 2. [[Learning Mechanisms]]
|
||||
```python
|
||||
class LearningMechanism(ABC):
|
||||
"""Abstract base class for learning mechanisms."""
|
||||
|
||||
@abstractmethod
|
||||
def update_parameters(self,
|
||||
experience: Experience,
|
||||
current_params: ModelParameters) -> ModelParameters:
|
||||
"""Update model parameters based on experience."""
|
||||
pass
|
||||
```
|
||||
|
||||
### 3. [[Adaptation Strategies]]
|
||||
```python
|
||||
class AdaptationStrategy(ABC):
|
||||
"""Abstract base class for adaptation strategies."""
|
||||
|
||||
@abstractmethod
|
||||
def adapt_control_parameters(self,
|
||||
performance: PerformanceMetrics,
|
||||
current_params: ControlParameters
|
||||
) -> ControlParameters:
|
||||
"""Adapt control parameters based on performance."""
|
||||
pass
|
||||
```
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### 1. [[Bioregional Stewardship]]
|
||||
```python
|
||||
# Configure bioregional stewardship
|
||||
config = InferenceConfig(
|
||||
method=InferenceMethod.HIERARCHICAL_SAMPLING,
|
||||
policy_type=PolicyType.MIXED,
|
||||
temporal_horizon=20,
|
||||
spatial_scales=["local", "landscape", "regional"],
|
||||
learning_rate=0.01,
|
||||
precision_init=1.0,
|
||||
custom_params={
|
||||
"stewardship_mode": "adaptive_comanagement",
|
||||
"stakeholder_weights": {
|
||||
"local_communities": 0.3,
|
||||
"indigenous_knowledge": 0.3,
|
||||
"scientific_expertise": 0.2,
|
||||
"policy_makers": 0.2
|
||||
},
|
||||
"intervention_constraints": {
|
||||
"budget_limit": 1000000,
|
||||
"time_horizon": "5y",
|
||||
"social_acceptance": 0.7
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
# Create bioregional stewardship dispatcher
|
||||
dispatcher = BioregionalStewardshipFactory.create(config)
|
||||
```
|
||||
|
||||
### 2. [[Advanced Stewardship]]
|
||||
```python
|
||||
# Configure advanced stewardship with learning
|
||||
config = InferenceConfig(
|
||||
method=InferenceMethod.PARTICIPATORY_SAMPLING,
|
||||
policy_type=PolicyType.ADAPTIVE,
|
||||
temporal_horizon=50,
|
||||
num_samples=5000,
|
||||
custom_params={
|
||||
"stewardship_mode": "transformative",
|
||||
"learning_mechanism": "social_ecological",
|
||||
"adaptation_strategy": "resilience_based",
|
||||
"cross_scale_coupling": True,
|
||||
"stakeholder_network": "distributed"
|
||||
}
|
||||
)
|
||||
|
||||
# Create dispatcher with social-ecological learning
|
||||
dispatcher = BioregionalStewardshipFactory.create_with_learning(config)
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
1. [[Bioregional Stewardship Theory]]
|
||||
2. [[Social-Ecological Systems]]
|
||||
3. [[Adaptive Comanagement]]
|
||||
4. [[Resilience Thinking]]
|
||||
5. [[Traditional Ecological Knowledge]]
|
||||
@ -1,267 +0,0 @@
|
||||
# BioFirm Active Inference Schema
|
||||
|
||||
## Core Abstractions
|
||||
|
||||
### [[State Space Abstraction]]
|
||||
```python
|
||||
@dataclass
|
||||
class StateSpace:
|
||||
"""Abstract representation of state spaces in active inference models."""
|
||||
dimensions: List[int]
|
||||
labels: Dict[str, List[str]]
|
||||
mappings: Dict[str, np.ndarray]
|
||||
hierarchical_levels: Optional[int] = 1
|
||||
```
|
||||
|
||||
### [[Observation Model]]
|
||||
```python
|
||||
@dataclass
|
||||
class ObservationModel:
|
||||
"""Generalized observation model for active inference."""
|
||||
state_space: StateSpace
|
||||
observation_space: StateSpace
|
||||
likelihood_matrix: np.ndarray # A matrix
|
||||
noise_model: str = "gaussian"
|
||||
precision: float = 1.0
|
||||
```
|
||||
|
||||
### [[Transition Model]]
|
||||
```python
|
||||
@dataclass
|
||||
class TransitionModel:
|
||||
"""Dynamic transition model for state evolution."""
|
||||
state_space: StateSpace
|
||||
action_space: StateSpace
|
||||
transition_matrices: Dict[str, np.ndarray] # B matrices
|
||||
temporal_horizon: int
|
||||
control_modes: List[str] = ["homeostatic", "goal_directed", "exploratory"]
|
||||
```
|
||||
|
||||
## Homeostatic Control Framework
|
||||
|
||||
### 1. [[System Definition]]
|
||||
|
||||
```yaml
|
||||
system:
|
||||
name: "BioFirm"
|
||||
type: "homeostatic_control"
|
||||
|
||||
state_spaces:
|
||||
environment:
|
||||
dimensions: [5] # [TOO_LOW, LOWER_BOUND, MEDIUM, UPPER_BOUND, TOO_HIGH]
|
||||
type: "ordinal"
|
||||
bounds: [-2.0, 2.0]
|
||||
|
||||
observation:
|
||||
dimensions: [3] # [LOW, MEDIUM, HIGH]
|
||||
type: "categorical"
|
||||
mapping: "probabilistic"
|
||||
|
||||
action:
|
||||
dimensions: [3] # [DECREASE, MAINTAIN, INCREASE]
|
||||
type: "discrete"
|
||||
constraints: "ordered"
|
||||
|
||||
control_parameters:
|
||||
temporal_horizon: 5
|
||||
precision_init: 1.0
|
||||
learning_rate: 0.01
|
||||
exploration_weight: 0.3
|
||||
```
|
||||
|
||||
### 2. [[Inference Configuration]]
|
||||
|
||||
```yaml
|
||||
inference:
|
||||
method: "variational" # or "sampling", "mean_field"
|
||||
policy_type: "discrete"
|
||||
|
||||
variational_parameters:
|
||||
free_energy_type: "expected"
|
||||
inference_iterations: 10
|
||||
convergence_threshold: 1e-6
|
||||
|
||||
belief_initialization:
|
||||
type: "uniform"
|
||||
prior_strength: 1.0
|
||||
|
||||
precision_dynamics:
|
||||
update_rule: "adaptive"
|
||||
learning_rate: 0.1
|
||||
bounds: [0.1, 10.0]
|
||||
```
|
||||
|
||||
### 3. [[Matrix Specifications]]
|
||||
|
||||
```yaml
|
||||
matrices:
|
||||
observation_model: # A Matrix
|
||||
type: "probabilistic"
|
||||
normalization: "column"
|
||||
sparsity: "structured"
|
||||
initialization: "informed"
|
||||
|
||||
transition_model: # B Matrix
|
||||
type: "markov"
|
||||
constraints: "conservation"
|
||||
symmetry: "none"
|
||||
initialization: "identity_based"
|
||||
|
||||
preference_model: # C Matrix
|
||||
type: "log_probability"
|
||||
target_state: "MEDIUM"
|
||||
sharpness: 2.0
|
||||
|
||||
prior_beliefs: # D Matrix
|
||||
type: "distribution"
|
||||
initialization: "uniform"
|
||||
update_rule: "bayesian"
|
||||
```
|
||||
|
||||
## Analysis Framework
|
||||
|
||||
### 1. [[Performance Metrics]]
|
||||
```python
|
||||
@dataclass
|
||||
class PerformanceMetrics:
|
||||
"""Comprehensive performance tracking."""
|
||||
homeostatic_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"mean_deviation": 0.0,
|
||||
"time_in_bounds": 0.0,
|
||||
"recovery_speed": 0.0,
|
||||
"stability_index": 0.0
|
||||
})
|
||||
|
||||
information_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"belief_accuracy": 0.0,
|
||||
"epistemic_value": 0.0,
|
||||
"pragmatic_value": 0.0,
|
||||
"uncertainty": 0.0
|
||||
})
|
||||
|
||||
control_metrics: Dict[str, float] = field(default_factory=lambda: {
|
||||
"action_efficiency": 0.0,
|
||||
"policy_consistency": 0.0,
|
||||
"response_time": 0.0
|
||||
})
|
||||
```
|
||||
|
||||
### 2. [[Visualization Suite]]
|
||||
```python
|
||||
class VisualizationSuite:
|
||||
"""Comprehensive visualization tools."""
|
||||
|
||||
@staticmethod
|
||||
def plot_belief_dynamics(beliefs: np.ndarray,
|
||||
times: np.ndarray) -> plt.Figure:
|
||||
"""Plot belief evolution over time."""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def plot_free_energy_components(
|
||||
vfe: np.ndarray,
|
||||
efe: np.ndarray,
|
||||
components: Dict[str, np.ndarray]
|
||||
) -> plt.Figure:
|
||||
"""Visualize free energy decomposition."""
|
||||
pass
|
||||
|
||||
@staticmethod
|
||||
def plot_control_performance(
|
||||
states: np.ndarray,
|
||||
actions: np.ndarray,
|
||||
bounds: Tuple[float, float]
|
||||
) -> plt.Figure:
|
||||
"""Visualize control performance."""
|
||||
pass
|
||||
```
|
||||
|
||||
## Extension Points
|
||||
|
||||
### 1. [[Custom Control Modes]]
|
||||
```python
|
||||
class ControlMode(ABC):
|
||||
"""Abstract base class for control modes."""
|
||||
|
||||
@abstractmethod
|
||||
def compute_policy_prior(self,
|
||||
state: ModelState,
|
||||
goal: np.ndarray) -> np.ndarray:
|
||||
"""Compute policy prior based on control mode."""
|
||||
pass
|
||||
```
|
||||
|
||||
### 2. [[Learning Mechanisms]]
|
||||
```python
|
||||
class LearningMechanism(ABC):
|
||||
"""Abstract base class for learning mechanisms."""
|
||||
|
||||
@abstractmethod
|
||||
def update_parameters(self,
|
||||
experience: Experience,
|
||||
current_params: ModelParameters) -> ModelParameters:
|
||||
"""Update model parameters based on experience."""
|
||||
pass
|
||||
```
|
||||
|
||||
### 3. [[Adaptation Strategies]]
|
||||
```python
|
||||
class AdaptationStrategy(ABC):
|
||||
"""Abstract base class for adaptation strategies."""
|
||||
|
||||
@abstractmethod
|
||||
def adapt_control_parameters(self,
|
||||
performance: PerformanceMetrics,
|
||||
current_params: ControlParameters
|
||||
) -> ControlParameters:
|
||||
"""Adapt control parameters based on performance."""
|
||||
pass
|
||||
```
|
||||
|
||||
## Integration Examples
|
||||
|
||||
### 1. [[Basic Homeostatic Control]]
|
||||
```python
|
||||
# Configure basic homeostatic control
|
||||
config = InferenceConfig(
|
||||
method=InferenceMethod.VARIATIONAL,
|
||||
policy_type=PolicyType.DISCRETE,
|
||||
temporal_horizon=5,
|
||||
learning_rate=0.01,
|
||||
precision_init=1.0,
|
||||
custom_params={
|
||||
"control_mode": "homeostatic",
|
||||
"bounds": [-1.0, 1.0],
|
||||
"target_state": "MEDIUM"
|
||||
}
|
||||
)
|
||||
|
||||
# Create dispatcher
|
||||
dispatcher = ActiveInferenceFactory.create(config)
|
||||
```
|
||||
|
||||
### 2. [[Advanced Control]]
|
||||
```python
|
||||
# Configure advanced control with learning
|
||||
config = InferenceConfig(
|
||||
method=InferenceMethod.SAMPLING,
|
||||
policy_type=PolicyType.CONTINUOUS,
|
||||
temporal_horizon=10,
|
||||
num_samples=2000,
|
||||
custom_params={
|
||||
"control_mode": "adaptive",
|
||||
"learning_mechanism": "parameter_estimation",
|
||||
"adaptation_strategy": "performance_based"
|
||||
}
|
||||
)
|
||||
|
||||
# Create dispatcher with learning
|
||||
dispatcher = ActiveInferenceFactory.create_with_learning(config)
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
1. [[Homeostatic Control Theory]]
|
||||
2. [[Active Inference for Control]]
|
||||
3. [[Adaptive Systems]]
|
||||
4. [[Information Theory in Control]]
|
||||
Загрузка…
x
Ссылка в новой задаче
Block a user