Этот коммит содержится в:
Daniel Ari Friedman 2025-02-11 08:39:22 -08:00
родитель 58c8260224
Коммит eaf134b3c3
16 изменённых файлов: 2887 добавлений и 388 удалений

5
.obsidian/app.json поставляемый
Просмотреть файл

@ -1 +1,4 @@
{}
{
"alwaysUpdateLinks": true,
"showUnsupportedFiles": true
}

4
.obsidian/graph.json поставляемый
Просмотреть файл

@ -1,6 +1,6 @@
{
"collapse-filter": true,
"search": "Biofirm",
"search": "",
"showTags": false,
"showAttachments": false,
"hideUnresolved": false,
@ -17,6 +17,6 @@
"repelStrength": 10,
"linkStrength": 1,
"linkDistance": 250,
"scale": 0.8918260730087173,
"scale": 0.39636714355942987,
"close": false
}

58
.obsidian/workspace.json поставляемый
Просмотреть файл

@ -14,12 +14,12 @@
"state": {
"type": "markdown",
"state": {
"file": "knowledge_base/systems/Adaptive Comanagement.md",
"file": "knowledge_base/BioFirm/ecological_active_inference.md",
"mode": "source",
"source": false
},
"icon": "lucide-file",
"title": "Adaptive Comanagement"
"title": "ecological_active_inference"
}
}
]
@ -183,9 +183,34 @@
"command-palette:Open command palette": false
}
},
"active": "b3ae48a59c7d14cd",
"active": "0ba8a1b9b9dd949a",
"lastOpenFiles": [
"knowledge_base/BioFirm/active_inference_connections.md",
"knowledge_base/BioFirm/socioeconomic_active_inference.md",
"knowledge_base/BioFirm/ecological_active_inference.md",
"knowledge_base/mathematics/compute_vfe.md",
"knowledge_base/BioFirm/visualization/plotting.py",
"knowledge_base/BioFirm/core/transition.py",
"knowledge_base/BioFirm/core/stewardship.py",
"knowledge_base/BioFirm/core/state_spaces.py",
"knowledge_base/BioFirm/core/observation.py",
"knowledge_base/BioFirm/config/example_config.yaml",
"knowledge_base/BioFirm/visualization",
"knowledge_base/BioFirm/core",
"knowledge_base/BioFirm/config",
"knowledge_base/BioFirm/biofirm_schema.md",
"knowledge_base/BioFirm/biofirm.py",
"knowledge_base/BioFirm/Bioregional State Space.md",
"src/models/active_inference/docs/BioFirm/Bioregional State Space.md",
"src/models/active_inference/docs/BioFirm/knowledge_base/Active_Inference/Markov_Blankets.md",
"src/models/active_inference/docs/BioFirm/knowledge_base/Active_Inference/Free_Energy_Principle.md",
"src/models/active_inference/docs/BioFirm/biofirm_schema.md",
"knowledge_base/mathematics/expected_free_energy.md",
"knowledge_base/mathematics/belief_updating.md",
"knowledge_base/cognitive/bayesian_brain.md",
"knowledge_base/cognitive/cognitive_control.md",
"knowledge_base/cognitive/collective_behavior.md",
"State Space Abstraction.md",
"knowledge_base/systems/Adaptive Comanagement.md",
"knowledge_base/systems/Resilience Thinking.md",
"knowledge_base/systems/Social-Ecological Systems.md",
@ -193,17 +218,7 @@
"knowledge_base/systems/Bioregional Stewardship Theory.md",
"Things/Continuous_Generic/Continuous_Generic_README.md",
"src/models/active_inference/docs/biofirm_schema.md",
"src/models/active_inference/docs/BioFirm",
"Things/Baseball_Game/Baseball_Game.md",
"Things/Baseball_Game",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/top_level.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/entry_points.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/WHEEL",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/REQUESTED",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/RECORD",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/METADATA",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/LICENSE.txt",
"Things/Path_Network/venv/lib/python3.10/site-packages/pip-25.0.dist-info/AUTHORS.txt",
"Things/Path_Network/output/20250207_134114/agent_height_variations.png",
"Things/Path_Network/output/20250207_134114/water_level_distribution.png",
"Things/Path_Network/output/20250207_134114/final_state.png",
@ -214,23 +229,8 @@
"Things/Path_Network/output/20250207_134014/initial_state.png",
"Things/Path_Network/README.md",
"Things/Path_Network/Path_Network_README.md",
"Things/BioFirm/BioFirm_README.md",
"Output/tests/visualization/detailed_summary.png",
"Output/tests/visualization/summary.png",
"knowledge_base/cognitive/continuous_time_active_inference.md",
"Things/Generic_POMDP/Generic_POMDP_README.md",
"knowledge_base/agents/GenericPOMDP/matrices/A_matrix.md",
"knowledge_base/agents/GenericPOMDP/state_spaces/s_space.md",
"src/models/active_inference/docs/active_inference_dispatcher.md",
"Canvas.canvas",
"knowledge_base/mathematics/uncertainty_resolution.md",
"knowledge_base/mathematics/taylor_series.md",
"knowledge_base/mathematics/path_integral_free_energy.md",
"knowledge_base/agents/GenericPOMDP/guides/s_space_enthusiast.md",
"knowledge_base/mathematics/path_integral.md",
"knowledge_base/agents/GenericPOMDP/guides/a_space_enthusiast.md",
"knowledge_base/mathematics/information_gain.md",
"knowledge_base/agents/GenericPOMDP/guides/b_matrix_enthusiast.md",
"knowledge_base/agents/GenericPOMDP/guides/o_space_enthusiast.md"
"Canvas.canvas"
]
}

Просмотреть файл

@ -0,0 +1,241 @@
# [[Active Inference/Bioregional State Space|Bioregional State Space]]
## Overview
The [[Active Inference/Bioregional State Space|Bioregional State Space]] represents a comprehensive framework for modeling complex [[Social-Ecological Systems|social-ecological systems]] through [[Active Inference/Free Energy Principle|active inference]]. It implements a [[Active Inference/Hierarchical Models|heterarchical]] nested structure of [[Active Inference/Federated Learning|federated]] [[Active Inference/Markov Blankets|Markov Blankets]], enabling multi-scale representation and inference across interconnected [[Active Inference/Environmental States|ecological]], [[Active Inference/Climate States|climatic]], [[Active Inference/Social States|social]], and [[Active Inference/Economic States|economic]] domains.
## Theoretical Framework
### [[Active Inference/Hierarchical Models|Heterarchical Structure]]
The state space is organized as a heterarchical network of [[Active Inference/Markov Blankets|Markov Blankets]], allowing for:
- [[Active Inference/Information Flow|Multi-directional information flow]] between scales
- [[Active Inference/Network Theory|Non-hierarchical interactions]] between domains
- [[Active Inference/Emergence|Emergent properties]] at different scales
- [[Active Inference/Adaptive Systems|Dynamic reconfiguration]] based on context
### [[Active Inference/Markov Blankets|Nested Markov Blankets]]
Each component is encapsulated within nested [[Active Inference/Markov Blankets|Markov Blankets]] that define:
- [[Active Inference/Internal States|Internal states]] (intrinsic variables)
- [[Active Inference/External States|External states]] (environmental conditions)
- [[Active Inference/Active States|Active states]] (intervention capabilities)
- [[Active Inference/Sensory States|Sensory states]] (observation channels)
### [[Active Inference/Federated Learning|Federation Principles]]
The system implements [[Active Inference/Federated Learning|federated learning]] and inference through:
- [[Active Inference/Scale-Specific Representations|Scale-specific state representations]]
- [[Active Inference/Cross-Scale Coupling|Cross-scale coupling mechanisms]]
- [[Active Inference/Distributed Systems|Distributed update rules]]
- [[Active Inference/Collective Intelligence|Collective intelligence emergence]]
## Core Components
### [[Ecological State]]
- [[Biodiversity|Biodiversity levels]]
- [[Species Diversity|Species diversity indices]]
- [[Functional Diversity|Functional diversity metrics]]
- [[Genetic Diversity|Genetic diversity measures]]
- [[Habitat Connectivity|Habitat connectivity]]
- [[Network Metrics|Network metrics]]
- [[Ecological Corridors|Corridor quality]]
- [[Habitat Fragmentation|Fragmentation indices]]
- [[Ecosystem Services|Ecosystem services provision]]
- [[Supporting Services|Supporting services]]
- [[Regulating Services|Regulating services]]
- [[Cultural Services|Cultural services]]
- [[Species Richness]]
- [[Taxonomic Groups|Taxonomic groups]]
- [[Functional Groups|Functional groups]]
- [[Indicator Species|Indicator species]]
- [[Ecological Integrity|Ecological integrity metrics]]
- [[System Stability|System stability]]
- [[Ecological Resilience|Resilience indicators]]
- [[Disturbance Response|Disturbance responses]]
### [[Climate State]]
- [[Temperature Patterns|Temperature patterns]]
- [[Temporal Trends|Temporal trends]]
- [[Spatial Distribution|Spatial distribution]]
- [[Extreme Events|Extremes frequency]]
- [[Precipitation Regimes|Precipitation regimes]]
- [[Seasonal Patterns|Seasonal patterns]]
- [[Precipitation Intensity|Intensity distribution]]
- [[Drought Indices|Drought indices]]
- [[Carbon Storage|Carbon storage capacity]]
- [[Biomass Pools|Biomass pools]]
- [[Soil Carbon|Soil carbon]]
- [[Carbon Fluxes|Carbon fluxes]]
- [[Albedo|Albedo measurements]]
- [[Surface Reflectivity|Surface reflectivity]]
- [[Seasonal Variation|Seasonal variation]]
- [[Land Cover Change|Land cover changes]]
- [[Extreme Events|Extreme event frequency]]
- [[Event Classification|Event typology]]
- [[Event Intensity|Intensity metrics]]
- [[Recovery Patterns|Recovery patterns]]
### [[Social State]]
- [[Community Engagement|Community engagement levels]]
- [[Participation Metrics|Participation metrics]]
- [[Social Networks|Network strength]]
- [[Knowledge Sharing|Knowledge sharing]]
- [[Traditional Knowledge|Traditional knowledge integration]]
- [[Practice Preservation|Practice preservation]]
- [[Intergenerational Transfer|Intergenerational transfer]]
- [[Knowledge Application|Application scope]]
- [[Stewardship Practices]]
- [[Management Approaches|Management approaches]]
- [[Monitoring Systems|Monitoring systems]]
- [[Adaptation Strategies|Adaptation strategies]]
- [[Resource Governance|Resource governance structures]]
- [[Decision Processes|Decision processes]]
- [[Rights Distribution|Rights distribution]]
- [[Conflict Resolution|Conflict resolution]]
- [[Social Resilience|Social resilience indicators]]
- [[Adaptive Capacity|Adaptive capacity]]
- [[Social Learning|Social learning]]
- [[Response Diversity|Response diversity]]
### [[Economic State]]
- [[Sustainable Livelihoods|Sustainable livelihood metrics]]
- [[Income Diversity|Income diversity]]
- [[Resource Access|Resource access]]
- [[Economic Security|Economic security]]
- [[Circular Economy|Circular economy indicators]]
- [[Material Flows|Material flows]]
- [[Waste Reduction|Waste reduction]]
- [[Resource Cycling|Resource cycling]]
- [[Ecosystem Valuation|Ecosystem valuation measures]]
- [[Service Pricing|Service pricing]]
- [[Natural Capital|Natural capital]]
- [[Benefit Distribution|Benefit distribution]]
- [[Green Infrastructure|Green infrastructure development]]
- [[Investment Levels|Investment levels]]
- [[System Integration|System integration]]
- [[Performance Metrics|Performance metrics]]
- [[Resource Efficiency|Resource efficiency metrics]]
- [[Use Optimization|Use optimization]]
- [[Impact Reduction|Impact reduction]]
- [[Innovation Adoption|Innovation adoption]]
## Implementation Details
### [[State Space Implementation|State Space Structure]]
```python
@dataclass
class BioregionalState:
"""[[Bioregional State]] implementation"""
ecological_state: Dict[str, float] # [[Ecological Variables]]
climate_state: Dict[str, float] # [[Climate Variables]]
social_state: Dict[str, float] # [[Social Variables]]
economic_state: Dict[str, float] # [[Economic Variables]]
```
### [[Markov Blanket Implementation]]
The state space is implemented through nested [[Markov Blankets]] at multiple scales:
1. [[Local Scale Implementation|Local Scale]] (Individual Components)
```python
class LocalMarkovBlanket:
"""[[Local Scale Markov Blanket]]"""
internal_state: BioregionalState # [[Internal State Implementation]]
external_state: Dict[str, float] # [[External State Implementation]]
active_state: Dict[str, float] # [[Active State Implementation]]
sensory_state: Dict[str, float] # [[Sensory State Implementation]]
```
2. [[Landscape Scale Implementation|Landscape Scale]] (Component Interactions)
```python
class LandscapeMarkovBlanket:
"""[[Landscape Scale Markov Blanket]]"""
local_blankets: List[LocalMarkovBlanket] # [[Local Scale Integration]]
coupling_matrices: Dict[str, np.ndarray] # [[Coupling Matrices]]
interaction_strengths: Dict[Tuple[str, str], float] # [[Interaction Strengths]]
```
3. [[Regional Scale Implementation|Regional Scale]] (Emergent Properties)
```python
class RegionalMarkovBlanket:
"""[[Regional Scale Markov Blanket]]"""
landscape_blankets: List[LandscapeMarkovBlanket] # [[Landscape Scale Integration]]
emergence_patterns: Dict[str, np.ndarray] # [[Emergence Patterns]]
cross_scale_effects: Dict[str, float] # [[Cross-Scale Effects]]
```
### [[Federation Implementation|Federation Mechanisms]]
1. [[State Aggregation Implementation|State Aggregation]]
- [[Bottom-Up Aggregation|Bottom-up aggregation]] of state variables
- [[Top-Down Constraints|Top-down constraint propagation]]
- [[Lateral Information Exchange|Lateral information exchange]]
2. [[Update Rules Implementation|Update Rules]]
- [[Local Updates|Local state updates]] based on observations
- [[Cross-Scale Coupling Implementation|Cross-scale coupling]] through interaction matrices
- [[Adaptive Learning|Adaptive learning rates]] for different scales
3. [[Inference Process Implementation|Inference Process]]
- [[Free Energy Minimization|Variational free energy minimization]]
- [[Belief Propagation|Multi-scale belief propagation]]
- [[Uncertainty Handling|Uncertainty handling]] across scales
## [[Active Inference Integration]]
The state space integrates with the [[Active Inference Framework]] through:
1. [[Generative Models Implementation|Generative Models]]
- [[State Transition Models|State transition models]] at each scale
- [[Observation Models|Observation models]] with scale-specific noise
- [[Prior Preferences|Prior preferences]] for desired states
2. [[Policy Selection Implementation|Policy Selection]]
- [[Multi-Scale Action|Multi-scale action evaluation]]
- [[Control Hierarchies|Nested control hierarchies]]
- [[Context-Sensitive Intervention|Context-sensitive intervention selection]]
3. [[Learning and Adaptation Implementation|Learning and Adaptation]]
- [[Parameter Updates|Parameter updates]] across scales
- [[Model Refinement|Model structure refinement]]
- [[Adaptive Control|Adaptive control mechanisms]]
## [[Visualization and Analysis Implementation|Visualization and Analysis]]
The framework provides tools for:
1. [[State Visualization Implementation|State Visualization]]
- [[Multi-Scale Visualization|Multi-scale state representations]]
- [[Network Visualization|Interaction network visualization]]
- [[Time Series Analysis|Time series analysis]]
2. [[Performance Metrics Implementation|Performance Metrics]]
- [[Coupling Strength|Cross-scale coupling strength]]
- [[Information Flow|Information flow measures]]
- [[Resilience Indicators|System resilience indicators]]
3. [[Intervention Analysis Implementation|Intervention Analysis]]
- [[Impact Assessment|Impact assessment]]
- [[Uncertainty Quantification|Uncertainty quantification]]
- [[Optimization Methods|Optimization guidance]]
## Related Concepts
- [[Complex Systems Theory]]
- [[Ecological Networks]]
- [[Social-Ecological Systems]]
- [[Adaptive Management]]
- [[Resilience Thinking]]
- [[Systems Thinking]]
- [[Network Theory]]
- [[Information Theory]]
- [[Control Theory]]
- [[Machine Learning]]
## See Also
- [[BioFirm Framework]]
- [[Active Inference]]
- [[Markov Blankets]]
- [[Federated Learning]]
- [[Multi-Scale Analysis]]
- [[Ecological Modeling]]
- [[Social-Ecological Modeling]]
- [[Climate Modeling]]
- [[Economic Modeling]]

Просмотреть файл

@ -0,0 +1,148 @@
# [[BioFirm Active Inference Integration]]
## Overview
The BioFirm framework implements a specialized application of the [[Active Inference/Free Energy Principle|Free Energy Principle]] and [[Active Inference|Active Inference]] for bioregional stewardship. This document outlines the key theoretical and practical connections between these frameworks.
## Core Theoretical Connections
### 1. [[Active Inference/Markov Blankets|Markov Blankets]] in BioFirm
- **Hierarchical Implementation**
- Local ecosystem blankets
- Landscape-level blankets
- Regional/bioregional blankets
- **Cross-Scale Interactions**
- Vertical information flow
- Horizontal coupling
- Emergence patterns
### 2. [[Active Inference/Free Energy Principle|Free Energy Principle]] Application
- **Variational Free Energy**
- Ecological surprise minimization
- Multi-scale belief updating
- Adaptive parameter learning
- **System Boundaries**
- Ecological boundaries
- Social system interfaces
- Economic interactions
### 3. [[Active Inference/Generative Models|Generative Models]]
- **State Space Representation**
- Ecological states
- Climate dynamics
- Social-economic factors
- **Transition Dynamics**
- Ecosystem processes
- Climate patterns
- Social-ecological interactions
## Implementation Framework
### 1. [[Active Inference/Inference Process|Inference Process]]
```python
class BioregionalInference:
"""Implementation of active inference for bioregional systems"""
def update_beliefs(self, observations):
"""Update beliefs using variational inference"""
# Minimize variational free energy
# Update state estimates
# Propagate updates across scales
def select_actions(self, current_state):
"""Select actions using expected free energy"""
# Compute expected free energy
# Evaluate intervention options
# Choose optimal actions
```
### 2. [[Active Inference/Learning Mechanisms|Learning Mechanisms]]
- **Parameter Updates**
- Precision learning
- Model structure adaptation
- Cross-scale coupling strength
- **Experience Integration**
- Historical data
- Expert knowledge
- Traditional ecological knowledge
### 3. [[Active Inference/Control Framework|Control Framework]]
- **Multi-objective Control**
- Ecological stability
- Social wellbeing
- Economic sustainability
- **Adaptive Strategies**
- Context-sensitive interventions
- Risk-aware decision making
- Resilience enhancement
## Practical Applications
### 1. [[Active Inference/Ecological Management|Ecological Management]]
- Biodiversity conservation
- Ecosystem restoration
- Resource management
### 2. [[Active Inference/Social Systems|Social Systems]]
- Community engagement
- Knowledge integration
- Governance structures
### 3. [[Active Inference/Economic Integration|Economic Integration]]
- Sustainable livelihoods
- Circular economy
- Natural capital valuation
## Mathematical Framework
### 1. Free Energy Formulation
```math
F = E_q[ln q(s) - ln p(s,o)]
```
where:
- q(s): Variational density over states
- p(s,o): Generative model
- s: System states
- o: Observations
### 2. Expected Free Energy
```math
G = E_q[ln q(s') - ln p(s',o')]
```
where:
- s': Future states
- o': Expected observations
- G: Expected free energy
### 3. Policy Selection
```math
π* = argmin_π G(π)
```
where:
- π: Policy/intervention
- G(π): Expected free energy under policy
## Extensions and Future Directions
### 1. Theoretical Extensions
- Quantum active inference applications
- Non-equilibrium thermodynamics
- Complex systems theory
### 2. Implementation Advances
- Distributed computing frameworks
- Real-time adaptation mechanisms
- Multi-agent coordination
### 3. Application Domains
- Climate change adaptation
- Ecosystem restoration
- Sustainable development
## See Also
- [[Active Inference]]
- [[Free Energy Principle]]
- [[Markov Blankets]]
- [[Bioregional State Space]]
- [[BioFirm Framework]]
- [[Ecological Modeling]]
- [[Complex Systems]]

255
knowledge_base/BioFirm/biofirm.py Обычный файл
Просмотреть файл

@ -0,0 +1,255 @@
"""
Main BioFirm implementation.
Integrates all components for bioregional evaluation and stewardship.
"""
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
import yaml
from pathlib import Path
import logging
from .core.state_spaces import StateSpace, BioregionalState
from .core.observation import (
ObservationModel, HierarchicalObservation, ObservationAggregator
)
from .core.transition import (
TransitionModel, HierarchicalTransition, EcologicalConstraints
)
from .core.stewardship import (
Intervention, StewardshipMetrics, StewardshipMode,
AdaptiveComanagement, BioregionalStewardship
)
from .visualization.plotting import BioregionalVisualization
logger = logging.getLogger(__name__)
class BioFirm:
"""Main BioFirm class for bioregional active inference."""
def __init__(self, config_path: Union[str, Path]):
"""
Initialize BioFirm framework.
Args:
config_path: Path to configuration file
"""
self.config = self._load_config(config_path)
self._setup_components()
self._initialize_state()
self.visualization = BioregionalVisualization()
def _load_config(self, config_path: Union[str, Path]) -> Dict:
"""Load configuration from file."""
try:
with open(config_path, 'r') as f:
config = yaml.safe_load(f)
self._validate_config(config)
return config
except Exception as e:
logger.error(f"Error loading config: {str(e)}")
raise
def _validate_config(self, config: Dict) -> bool:
"""Validate configuration structure."""
required_sections = [
'system',
'state_spaces',
'observation',
'transition',
'stewardship',
'visualization'
]
for section in required_sections:
if section not in config:
raise ValueError(f"Missing required config section: {section}")
return True
def _setup_components(self):
"""Set up all framework components."""
# Set up state spaces
self.state_spaces = self._setup_state_spaces()
# Set up observation model
self.observation_model = self._setup_observation_model()
# Set up transition model
self.transition_model = self._setup_transition_model()
# Set up stewardship
self.stewardship = self._setup_stewardship()
def _setup_state_spaces(self) -> Dict[str, StateSpace]:
"""Set up state spaces for each scale."""
spaces = {}
for scale, config in self.config['state_spaces'].items():
spaces[scale] = StateSpace(
dimensions=config['dimensions'],
labels=config['labels'],
mappings=config['mappings'],
scale=scale
)
return spaces
def _setup_observation_model(self) -> HierarchicalObservation:
"""Set up hierarchical observation model."""
models = {}
for scale, config in self.config['observation'].items():
models[scale] = ObservationModel(
state_space=self.state_spaces[scale],
observation_space=StateSpace(**config['observation_space']),
likelihood_matrix=np.array(config['likelihood_matrix']),
noise_model=config.get('noise_model', 'gaussian'),
precision=config.get('precision', 1.0)
)
scale_couplings = {
tuple(k.split('_to_')): v
for k, v in self.config['observation']['couplings'].items()
}
return HierarchicalObservation(models, scale_couplings)
def _setup_transition_model(self) -> HierarchicalTransition:
"""Set up hierarchical transition model."""
models = {}
for scale, config in self.config['transition'].items():
models[scale] = TransitionModel(
state_space=self.state_spaces[scale],
action_space=StateSpace(**config['action_space']),
transition_matrices={
action: np.array(matrix)
for action, matrix in config['transition_matrices'].items()
},
temporal_horizon=config['temporal_horizon'],
control_modes=config.get('control_modes', ['homeostatic'])
)
scale_couplings = {
tuple(k.split('_to_')): v
for k, v in self.config['transition']['couplings'].items()
}
return HierarchicalTransition(models, scale_couplings)
def _setup_stewardship(self) -> BioregionalStewardship:
"""Set up stewardship framework."""
config = self.config['stewardship']
# Create stewardship mode
mode = AdaptiveComanagement(
stakeholder_weights=config['stakeholder_weights'],
learning_rate=config.get('learning_rate', 0.1)
)
return BioregionalStewardship(
observation_model=self.observation_model,
transition_model=self.transition_model,
stewardship_mode=mode
)
def _initialize_state(self):
"""Initialize system state."""
self.current_states = {}
self.target_states = {}
for scale, config in self.config['system']['initial_states'].items():
self.current_states[scale] = BioregionalState(**config)
for scale, config in self.config['system']['target_states'].items():
self.target_states[scale] = BioregionalState(**config)
def evaluate_system(self) -> Dict[str, float]:
"""Evaluate current system state."""
return self.stewardship.evaluate_system(
self.current_states,
self.target_states
)
def plan_interventions(self,
constraints: Optional[Dict[str, Any]] = None
) -> Dict[str, List[Intervention]]:
"""Plan interventions across scales."""
if constraints is None:
constraints = self.config['stewardship']['default_constraints']
return self.stewardship.plan_interventions(
self.current_states,
constraints
)
def apply_intervention(self,
intervention: Intervention,
scale: str) -> BioregionalState:
"""Apply intervention and update state."""
# Get current state
current_state = self.current_states[scale]
# Predict next state
next_state = self.transition_model.models[scale].predict_next_state(
current_state,
intervention.type
)
# Apply ecological constraints
constraints = EcologicalConstraints(
self.config['system']['ecological_constraints']
)
constrained_state = constraints.apply_constraints(next_state)
# Update current state
self.current_states[scale] = constrained_state
# Update metrics
self.stewardship.update_metrics(
self.current_states,
{scale: [intervention]}
)
return constrained_state
def visualize_state(self,
time_series: Optional[np.ndarray] = None,
scale: Optional[str] = None):
"""Visualize system state."""
if scale is None:
scale = list(self.current_states.keys())[0]
return self.visualization.plot_system_state(
self.current_states[scale],
time_series
)
def visualize_intervention(self,
before_state: BioregionalState,
after_state: BioregionalState,
intervention: Intervention):
"""Visualize intervention impacts."""
return self.visualization.plot_intervention_impacts(
before_state,
after_state,
intervention.__dict__
)
def visualize_cross_scale(self,
states: Optional[Dict[str, np.ndarray]] = None):
"""Visualize cross-scale dynamics."""
if states is None:
states = {
scale: np.array([state.to_vector()])
for scale, state in self.current_states.items()
}
scales = list(states.keys())
interactions = np.array([
[self.transition_model.scale_couplings.get(
(scale1, scale2), 0.0
) for scale2 in scales]
for scale1 in scales
])
return self.visualization.plot_cross_scale_dynamics(
states, scales, interactions
)

318
knowledge_base/BioFirm/biofirm_schema.md Обычный файл
Просмотреть файл

@ -0,0 +1,318 @@
# [[BioFirm Framework|BioFirm]] Active Inference Schema
## Core Abstractions
### [[Active Inference/State Space|State Space Abstraction]]
The state space implementation follows the [[Active Inference/Free Energy Principle|Free Energy Principle]] and incorporates [[Active Inference/Markov Blankets|Markov Blankets]] at multiple scales.
```python
@dataclass
class StateSpace:
"""Abstract representation of state spaces in [[Active Inference/Generative Models|active inference models]]."""
dimensions: List[int] # [[Active Inference/State Dimensionality|State dimensions]]
labels: Dict[str, List[str]] # [[Active Inference/State Labels|State labels]]
mappings: Dict[str, np.ndarray] # [[Active Inference/State Mappings|State mappings]]
hierarchical_levels: Optional[int] = 1 # [[Active Inference/Hierarchical Models|Hierarchical levels]]
scale: Optional[str] = None # [[Active Inference/Spatial Scale|Spatial scale]]
temporal_resolution: Optional[str] = None # [[Active Inference/Temporal Scale|Temporal resolution]]
```
### [[Bioregional State Space]]
Implements a [[Active Inference/Hierarchical State Space|hierarchical state space]] for bioregional systems.
```python
@dataclass
class BioregionalState:
"""[[Active Inference/State Representation|Comprehensive state representation]]."""
ecological_state: Dict[str, float] # [[Active Inference/Environmental States|Environmental states]]
climate_state: Dict[str, float] # [[Active Inference/Climate States|Climate states]]
social_state: Dict[str, float] # [[Active Inference/Social States|Social states]]
economic_state: Dict[str, float] # [[Active Inference/Economic States|Economic states]]
```
### [[Active Inference/Observation Model|Observation Model]]
Implements the [[Active Inference/Likelihood Mapping|likelihood mapping]] between hidden states and observations.
```python
@dataclass
class ObservationModel:
"""[[Active Inference/Generative Process|Generalized observation model]]."""
state_space: StateSpace # [[Active Inference/Hidden States|Hidden states]]
observation_space: StateSpace # [[Active Inference/Sensory States|Sensory states]]
likelihood_matrix: np.ndarray # [[Active Inference/A Matrix|A matrix]]
noise_model: str = "gaussian" # [[Active Inference/Observation Noise|Observation noise]]
precision: float = 1.0 # [[Active Inference/Sensory Precision|Sensory precision]]
```
### [[Active Inference/Transition Model|Transition Model]]
Implements the [[Active Inference/State Transitions|state transition dynamics]].
```python
@dataclass
class TransitionModel:
"""[[Active Inference/Dynamic Model|Dynamic transition model]]."""
state_space: StateSpace # [[Active Inference/State Space|State space]]
action_space: StateSpace # [[Active Inference/Action Space|Action space]]
transition_matrices: Dict[str, np.ndarray] # [[Active Inference/B Matrix|B matrices]]
temporal_horizon: int # [[Active Inference/Planning Horizon|Planning horizon]]
control_modes: List[str] = [ # [[Active Inference/Control Modes|Control modes]]
"homeostatic", # [[Active Inference/Homeostatic Control|Homeostatic]]
"goal_directed", # [[Active Inference/Goal-Directed Control|Goal-directed]]
"exploratory" # [[Active Inference/Exploratory Behavior|Exploratory]]
]
```
## [[Active Inference/Homeostatic Control|Homeostatic Control Framework]]
### 1. [[Active Inference/System Definition|System Definition]]
Defines the [[Active Inference/System Configuration|system configuration]] and [[Active Inference/Control Parameters|control parameters]].
```yaml
system:
name: "BioFirm"
type: "bioregional_stewardship"
state_spaces:
bioregional: # [[Active Inference/Bioregional States|Bioregional states]]
dimensions: [20]
type: "continuous"
bounds: [0.0, 1.0]
scales: ["local", "landscape", "regional", "bioregional"]
observation: # [[Active Inference/Observation Space|Observation space]]
dimensions: [5]
type: "ordinal"
mapping: "probabilistic"
uncertainty: "heteroscedastic"
action: # [[Active Inference/Action Space|Action space]]
dimensions: [4]
type: "discrete"
constraints: "nested"
coupling: "cross_scale"
control_parameters: # [[Active Inference/Control Parameters|Control parameters]]
temporal_horizon: 20
precision_init: 1.0
learning_rate: 0.01
exploration_weight: 0.3
adaptation_rate: 0.05
cross_scale_coupling: 0.4
```
### 2. [[Active Inference/Inference Configuration|Inference Configuration]]
Configures the [[Active Inference/Variational Inference|variational inference]] process.
```yaml
inference:
method: "variational" # [[Active Inference/Inference Methods|Inference methods]]
policy_type: "discrete" # [[Active Inference/Policy Types|Policy types]]
variational_parameters: # [[Active Inference/Variational Parameters|Variational parameters]]
free_energy_type: "expected" # [[Active Inference/Free Energy Types|Free energy types]]
inference_iterations: 10
convergence_threshold: 1e-6
belief_initialization: # [[Active Inference/Belief Initialization|Belief initialization]]
type: "uniform"
prior_strength: 1.0
precision_dynamics: # [[Active Inference/Precision Dynamics|Precision dynamics]]
update_rule: "adaptive"
learning_rate: 0.1
bounds: [0.1, 10.0]
```
### 3. [[Active Inference/Matrix Specifications|Matrix Specifications]]
Defines the [[Active Inference/Generative Model Matrices|generative model matrices]].
```yaml
matrices:
observation_model: # [[Active Inference/A Matrix|A Matrix]]
type: "hierarchical_probabilistic"
normalization: "hierarchical"
sparsity: "block_structured"
initialization: "informed_ecological"
transition_model: # [[Active Inference/B Matrix|B Matrix]]
type: "coupled_markov"
constraints: "mass_energy_conservation"
symmetry: "ecological_networks"
initialization: "ecosystem_based"
preference_model: # [[Active Inference/C Matrix|C Matrix]]
type: "multi_objective"
target_states:
ecological: "GOOD"
social: "FAIR"
economic: "SUSTAINABLE"
weights:
ecological: 0.4
social: 0.3
economic: 0.3
prior_beliefs: # [[Active Inference/D Matrix|D Matrix]]
type: "hierarchical_distribution"
initialization: "expert_informed"
update_rule: "bayesian_ecological"
```
## [[Active Inference/Analysis Framework|Analysis Framework]]
### 1. [[Active Inference/Performance Metrics|Performance Metrics]]
Implements [[Active Inference/Performance Evaluation|performance evaluation]] metrics.
```python
@dataclass
class BioregionalMetrics:
"""[[Active Inference/Performance Tracking|Performance tracking]]."""
ecological_metrics: Dict[str, float] # [[Active Inference/Ecological Metrics|Ecological metrics]]
climate_metrics: Dict[str, float] # [[Active Inference/Climate Metrics|Climate metrics]]
social_metrics: Dict[str, float] # [[Active Inference/Social Metrics|Social metrics]]
economic_metrics: Dict[str, float] # [[Active Inference/Economic Metrics|Economic metrics]]
stewardship_metrics: Dict[str, float] # [[Active Inference/Stewardship Metrics|Stewardship metrics]]
```
### 2. [[Active Inference/Visualization|Visualization Suite]]
Provides [[Active Inference/Visualization Tools|visualization tools]] for analysis.
```python
class BioregionalVisualization:
"""[[Active Inference/Visualization Tools|Visualization tools]]."""
@staticmethod
def plot_system_state(
bioregional_state: BioregionalState,
time_series: np.ndarray
) -> plt.Figure:
"""[[Active Inference/State Visualization|State visualization]]."""
pass
@staticmethod
def plot_intervention_impacts(
before_state: BioregionalState,
after_state: BioregionalState,
intervention_data: Dict[str, Any]
) -> plt.Figure:
"""[[Active Inference/Intervention Analysis|Intervention analysis]]."""
pass
@staticmethod
def plot_cross_scale_dynamics(
states: Dict[str, np.ndarray],
scales: List[str],
interactions: np.ndarray
) -> plt.Figure:
"""[[Active Inference/Cross-Scale Analysis|Cross-scale analysis]]."""
pass
```
## [[Active Inference/Extension Points|Extension Points]]
### 1. [[Active Inference/Stewardship Modes|Stewardship Modes]]
```python
class StewardshipMode(ABC):
"""Abstract base class for stewardship modes."""
@abstractmethod
def evaluate_state(self,
current_state: BioregionalState,
target_state: BioregionalState) -> float:
"""Evaluate current state against stewardship goals."""
pass
@abstractmethod
def propose_interventions(self,
state: BioregionalState,
constraints: Dict[str, Any]) -> List[Intervention]:
"""Propose context-appropriate interventions."""
pass
```
### 2. [[Learning Mechanisms]]
```python
class LearningMechanism(ABC):
"""Abstract base class for learning mechanisms."""
@abstractmethod
def update_parameters(self,
experience: Experience,
current_params: ModelParameters) -> ModelParameters:
"""Update model parameters based on experience."""
pass
```
### 3. [[Adaptation Strategies]]
```python
class AdaptationStrategy(ABC):
"""Abstract base class for adaptation strategies."""
@abstractmethod
def adapt_control_parameters(self,
performance: PerformanceMetrics,
current_params: ControlParameters
) -> ControlParameters:
"""Adapt control parameters based on performance."""
pass
```
## Integration Examples
### 1. [[Bioregional Stewardship]]
```python
# Configure bioregional stewardship
config = InferenceConfig(
method=InferenceMethod.HIERARCHICAL_SAMPLING,
policy_type=PolicyType.MIXED,
temporal_horizon=20,
spatial_scales=["local", "landscape", "regional"],
learning_rate=0.01,
precision_init=1.0,
custom_params={
"stewardship_mode": "adaptive_comanagement",
"stakeholder_weights": {
"local_communities": 0.3,
"indigenous_knowledge": 0.3,
"scientific_expertise": 0.2,
"policy_makers": 0.2
},
"intervention_constraints": {
"budget_limit": 1000000,
"time_horizon": "5y",
"social_acceptance": 0.7
}
}
)
# Create bioregional stewardship dispatcher
dispatcher = BioregionalStewardshipFactory.create(config)
```
### 2. [[Advanced Stewardship]]
```python
# Configure advanced stewardship with learning
config = InferenceConfig(
method=InferenceMethod.PARTICIPATORY_SAMPLING,
policy_type=PolicyType.ADAPTIVE,
temporal_horizon=50,
num_samples=5000,
custom_params={
"stewardship_mode": "transformative",
"learning_mechanism": "social_ecological",
"adaptation_strategy": "resilience_based",
"cross_scale_coupling": True,
"stakeholder_network": "distributed"
}
)
# Create dispatcher with social-ecological learning
dispatcher = BioregionalStewardshipFactory.create_with_learning(config)
```
## References
1. [[Bioregional Stewardship Theory]]
2. [[Social-Ecological Systems]]
3. [[Adaptive Comanagement]]
4. [[Resilience Thinking]]
5. [[Traditional Ecological Knowledge]]

Просмотреть файл

@ -0,0 +1,135 @@
# Example BioFirm Configuration
system:
name: "BioFirm"
type: "bioregional_stewardship"
initial_states:
local:
ecological_state:
biodiversity: 0.4
habitat_connectivity: 0.3
ecosystem_services: 0.5
species_richness: 0.4
ecological_integrity: 0.3
climate_state:
temperature: 0.6
precipitation: 0.5
carbon_storage: 0.3
albedo: 0.4
extreme_events: 0.7
social_state:
community_engagement: 0.4
traditional_knowledge: 0.3
stewardship_practices: 0.4
resource_governance: 0.3
social_resilience: 0.4
economic_state:
sustainable_livelihoods: 0.3
circular_economy: 0.2
ecosystem_valuation: 0.3
green_infrastructure: 0.2
resource_efficiency: 0.3
target_states:
local:
ecological_state:
biodiversity: 0.8
habitat_connectivity: 0.7
ecosystem_services: 0.8
species_richness: 0.7
ecological_integrity: 0.8
climate_state:
temperature: 0.5
precipitation: 0.6
carbon_storage: 0.8
albedo: 0.6
extreme_events: 0.3
social_state:
community_engagement: 0.8
traditional_knowledge: 0.7
stewardship_practices: 0.8
resource_governance: 0.7
social_resilience: 0.8
economic_state:
sustainable_livelihoods: 0.7
circular_economy: 0.6
ecosystem_valuation: 0.7
green_infrastructure: 0.6
resource_efficiency: 0.7
ecological_constraints:
"ecological.biodiversity_to_ecological.ecosystem_services":
min: 0.5
max: 2.0
"climate.carbon_storage_to_climate.temperature":
min: 0.3
max: 1.5
"social.community_engagement_to_ecological.stewardship_practices":
min: 0.7
max: 1.3
state_spaces:
local:
dimensions: [20] # Combined dimensions from all states
labels:
ecological: ["biodiversity", "habitat_connectivity", "ecosystem_services", "species_richness", "ecological_integrity"]
climate: ["temperature", "precipitation", "carbon_storage", "albedo", "extreme_events"]
social: ["community_engagement", "traditional_knowledge", "stewardship_practices", "resource_governance", "social_resilience"]
economic: ["sustainable_livelihoods", "circular_economy", "ecosystem_valuation", "green_infrastructure", "resource_efficiency"]
mappings:
identity: [[1.0, 0.0], [0.0, 1.0]] # Example identity mapping
scale: "local"
temporal_resolution: "monthly"
observation:
local:
observation_space:
dimensions: [5] # [CRITICAL, POOR, FAIR, GOOD, EXCELLENT]
labels:
states: ["CRITICAL", "POOR", "FAIR", "GOOD", "EXCELLENT"]
mappings:
ordinal: [[1.0, 0.0], [0.0, 1.0]] # Example ordinal mapping
likelihood_matrix: [[0.8, 0.2], [0.2, 0.8]] # Example likelihood matrix
noise_model: "gaussian"
precision: 1.0
couplings:
local_to_landscape: 0.3
landscape_to_regional: 0.4
transition:
local:
action_space:
dimensions: [4] # [PROTECT, RESTORE, ENHANCE, TRANSFORM]
labels:
actions: ["PROTECT", "RESTORE", "ENHANCE", "TRANSFORM"]
mappings:
discrete: [[1.0, 0.0], [0.0, 1.0]] # Example discrete mapping
transition_matrices:
PROTECT: [[0.9, 0.1], [0.1, 0.9]] # Example transition matrices
RESTORE: [[0.7, 0.3], [0.3, 0.7]]
ENHANCE: [[0.6, 0.4], [0.4, 0.6]]
TRANSFORM: [[0.4, 0.6], [0.6, 0.4]]
temporal_horizon: 20
control_modes: ["homeostatic", "goal_directed", "exploratory"]
couplings:
local_to_landscape: 0.3
landscape_to_regional: 0.4
stewardship:
stakeholder_weights:
local_communities: 0.3
indigenous_knowledge: 0.3
scientific_expertise: 0.2
policy_makers: 0.2
learning_rate: 0.1
default_constraints:
budget_limit: 1000000
time_horizon: "5y"
social_acceptance: 0.7
visualization:
style: "seaborn-whitegrid"
update_frequency: 10
save_format: "png"
dpi: 300

200
knowledge_base/BioFirm/core/observation.py Обычный файл
Просмотреть файл

@ -0,0 +1,200 @@
"""
Observation model implementation for BioFirm framework.
Handles the mapping between true states and observations.
"""
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from scipy.stats import multivariate_normal
from .state_spaces import StateSpace, BioregionalState
@dataclass
class ObservationModel:
"""Generalized observation model for active inference."""
state_space: StateSpace
observation_space: StateSpace
likelihood_matrix: np.ndarray # A matrix
noise_model: str = "gaussian"
precision: float = 1.0
def __post_init__(self):
"""Validate observation model configuration."""
self._validate_spaces()
self._validate_likelihood()
self._setup_noise_model()
def _validate_spaces(self):
"""Ensure state and observation spaces are compatible."""
if not isinstance(self.state_space, StateSpace):
raise TypeError("state_space must be a StateSpace instance")
if not isinstance(self.observation_space, StateSpace):
raise TypeError("observation_space must be a StateSpace instance")
def _validate_likelihood(self):
"""Validate likelihood matrix dimensions."""
expected_shape = (
np.prod(self.observation_space.dimensions),
np.prod(self.state_space.dimensions)
)
if self.likelihood_matrix.shape != expected_shape:
raise ValueError(
f"Likelihood matrix shape {self.likelihood_matrix.shape} "
f"does not match expected shape {expected_shape}"
)
def _setup_noise_model(self):
"""Configure noise model based on specification."""
if self.noise_model not in ["gaussian", "poisson", "categorical"]:
raise ValueError(f"Unsupported noise model: {self.noise_model}")
self.noise_dist = {
"gaussian": self._gaussian_noise,
"poisson": self._poisson_noise,
"categorical": self._categorical_noise
}[self.noise_model]
def observe(self, state: BioregionalState) -> np.ndarray:
"""Generate observation from true state."""
# Convert state to vector form
state_vector = state.to_vector()
# Generate noiseless prediction
prediction = np.dot(self.likelihood_matrix, state_vector)
# Add noise according to model
observation = self.noise_dist(prediction)
return observation
def _gaussian_noise(self, prediction: np.ndarray) -> np.ndarray:
"""Apply Gaussian observation noise."""
noise_cov = np.eye(len(prediction)) / self.precision
return multivariate_normal.rvs(
mean=prediction,
cov=noise_cov
)
def _poisson_noise(self, prediction: np.ndarray) -> np.ndarray:
"""Apply Poisson observation noise."""
return np.random.poisson(prediction * self.precision)
def _categorical_noise(self, prediction: np.ndarray) -> np.ndarray:
"""Apply categorical observation noise."""
# Normalize prediction to probabilities
probs = prediction / np.sum(prediction)
# Sample categorical distribution
return np.random.multinomial(1, probs)
class HierarchicalObservation:
"""Hierarchical observation model for multi-scale inference."""
def __init__(self,
models: Dict[str, ObservationModel],
scale_couplings: Dict[Tuple[str, str], float]):
"""
Initialize hierarchical observation model.
Args:
models: Dictionary mapping scales to ObservationModels
scale_couplings: Dictionary mapping scale pairs to coupling strengths
"""
self.models = models
self.scale_couplings = scale_couplings
self._validate_configuration()
def _validate_configuration(self):
"""Validate hierarchical model configuration."""
# Validate models
if not all(isinstance(m, ObservationModel) for m in self.models.values()):
raise TypeError("All models must be ObservationModel instances")
# Validate couplings
scales = set(self.models.keys())
for (scale1, scale2) in self.scale_couplings.keys():
if scale1 not in scales or scale2 not in scales:
raise ValueError(f"Invalid scales in coupling: {scale1}, {scale2}")
def observe_hierarchy(self,
states: Dict[str, BioregionalState]
) -> Dict[str, np.ndarray]:
"""Generate coupled observations across scales."""
observations = {}
# First pass: generate independent observations
for scale, state in states.items():
observations[scale] = self.models[scale].observe(state)
# Second pass: apply cross-scale coupling
coupled_observations = observations.copy()
for (scale1, scale2), coupling in self.scale_couplings.items():
# Compute coupled observation as weighted average
coupled_observations[scale1] = (
(1 - coupling) * observations[scale1] +
coupling * observations[scale2]
)
return coupled_observations
class ObservationAggregator:
"""Aggregates observations across time and space."""
def __init__(self,
temporal_window: int,
spatial_scales: List[str],
aggregation_method: str = "mean"):
"""
Initialize observation aggregator.
Args:
temporal_window: Number of time steps to aggregate
spatial_scales: List of spatial scales to consider
aggregation_method: How to aggregate observations
"""
self.temporal_window = temporal_window
self.spatial_scales = spatial_scales
self.aggregation_method = aggregation_method
self.observation_buffer = {
scale: [] for scale in spatial_scales
}
def add_observation(self,
scale: str,
observation: np.ndarray,
timestamp: Optional[float] = None):
"""Add new observation to buffer."""
if scale not in self.spatial_scales:
raise ValueError(f"Invalid scale: {scale}")
self.observation_buffer[scale].append({
'observation': observation,
'timestamp': timestamp or 0.0
})
# Maintain buffer size
if len(self.observation_buffer[scale]) > self.temporal_window:
self.observation_buffer[scale].pop(0)
def get_aggregate(self, scale: str) -> np.ndarray:
"""Get aggregated observation for scale."""
if scale not in self.spatial_scales:
raise ValueError(f"Invalid scale: {scale}")
observations = [
item['observation']
for item in self.observation_buffer[scale]
]
if not observations:
raise ValueError(f"No observations for scale {scale}")
if self.aggregation_method == "mean":
return np.mean(observations, axis=0)
elif self.aggregation_method == "median":
return np.median(observations, axis=0)
elif self.aggregation_method == "max":
return np.max(observations, axis=0)
else:
raise ValueError(f"Invalid aggregation method: {self.aggregation_method}")

171
knowledge_base/BioFirm/core/state_spaces.py Обычный файл
Просмотреть файл

@ -0,0 +1,171 @@
"""
Core state space implementations for BioFirm framework.
Defines the fundamental state representations and transformations.
"""
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Union, Any
import numpy as np
from abc import ABC, abstractmethod
@dataclass
class StateSpace:
"""Abstract representation of state spaces in active inference models."""
dimensions: List[int]
labels: Dict[str, List[str]]
mappings: Dict[str, np.ndarray]
hierarchical_levels: Optional[int] = 1
scale: Optional[str] = None # spatial scale of the state space
temporal_resolution: Optional[str] = None # temporal resolution
def __post_init__(self):
"""Validate state space configuration."""
self._validate_dimensions()
self._validate_mappings()
def _validate_dimensions(self):
"""Ensure dimensions are properly specified."""
if not all(isinstance(d, int) and d > 0 for d in self.dimensions):
raise ValueError("All dimensions must be positive integers")
def _validate_mappings(self):
"""Validate mapping matrices."""
for key, mapping in self.mappings.items():
if not isinstance(mapping, np.ndarray):
raise TypeError(f"Mapping {key} must be a numpy array")
@dataclass
class BioregionalState:
"""Comprehensive bioregional state representation."""
ecological_state: Dict[str, float] = field(default_factory=lambda: {
"biodiversity": 0.0,
"habitat_connectivity": 0.0,
"ecosystem_services": 0.0,
"species_richness": 0.0,
"ecological_integrity": 0.0
})
climate_state: Dict[str, float] = field(default_factory=lambda: {
"temperature": 0.0,
"precipitation": 0.0,
"carbon_storage": 0.0,
"albedo": 0.0,
"extreme_events": 0.0
})
social_state: Dict[str, float] = field(default_factory=lambda: {
"community_engagement": 0.0,
"traditional_knowledge": 0.0,
"stewardship_practices": 0.0,
"resource_governance": 0.0,
"social_resilience": 0.0
})
economic_state: Dict[str, float] = field(default_factory=lambda: {
"sustainable_livelihoods": 0.0,
"circular_economy": 0.0,
"ecosystem_valuation": 0.0,
"green_infrastructure": 0.0,
"resource_efficiency": 0.0
})
def to_vector(self) -> np.ndarray:
"""Convert state to vector representation."""
return np.array([
*list(self.ecological_state.values()),
*list(self.climate_state.values()),
*list(self.social_state.values()),
*list(self.economic_state.values())
])
@classmethod
def from_vector(cls, vector: np.ndarray) -> 'BioregionalState':
"""Create state from vector representation."""
if len(vector) != 20: # Total number of state variables
raise ValueError("Vector must have length 20")
state = cls()
# Update ecological state
for i, key in enumerate(state.ecological_state.keys()):
state.ecological_state[key] = vector[i]
# Update climate state
offset = len(state.ecological_state)
for i, key in enumerate(state.climate_state.keys()):
state.climate_state[key] = vector[offset + i]
# Update social state
offset += len(state.climate_state)
for i, key in enumerate(state.social_state.keys()):
state.social_state[key] = vector[offset + i]
# Update economic state
offset += len(state.social_state)
for i, key in enumerate(state.economic_state.keys()):
state.economic_state[key] = vector[offset + i]
return state
def validate_bounds(self) -> bool:
"""Validate that all state variables are within [0,1]."""
for state_dict in [self.ecological_state, self.climate_state,
self.social_state, self.economic_state]:
if not all(0 <= v <= 1 for v in state_dict.values()):
return False
return True
class StateTransformation(ABC):
"""Abstract base class for state transformations."""
@abstractmethod
def transform(self, state: BioregionalState) -> BioregionalState:
"""Transform state according to implementation."""
pass
@abstractmethod
def inverse_transform(self, state: BioregionalState) -> BioregionalState:
"""Inverse transform state according to implementation."""
pass
class ScaleTransformation(StateTransformation):
"""Transform states between different spatial scales."""
def __init__(self, source_scale: str, target_scale: str,
aggregation_weights: Optional[Dict[str, np.ndarray]] = None):
self.source_scale = source_scale
self.target_scale = target_scale
self.aggregation_weights = aggregation_weights or self._default_weights()
def transform(self, state: BioregionalState) -> BioregionalState:
"""Transform state from source to target scale."""
if self.source_scale == self.target_scale:
return state
vector = state.to_vector()
transformed = np.dot(self.aggregation_weights[self.target_scale], vector)
return BioregionalState.from_vector(transformed)
def inverse_transform(self, state: BioregionalState) -> BioregionalState:
"""Transform state from target back to source scale."""
if self.source_scale == self.target_scale:
return state
vector = state.to_vector()
transformed = np.dot(
np.linalg.pinv(self.aggregation_weights[self.target_scale]),
vector
)
return BioregionalState.from_vector(transformed)
def _default_weights(self) -> Dict[str, np.ndarray]:
"""Create default aggregation weights."""
n_dims = 20 # Total state dimensions
scales = ["local", "landscape", "regional", "bioregional"]
weights = {}
for scale in scales:
# Create identity matrix as default
weights[scale] = np.eye(n_dims)
return weights

426
knowledge_base/BioFirm/core/stewardship.py Обычный файл
Просмотреть файл

@ -0,0 +1,426 @@
"""
Stewardship model implementation for BioFirm framework.
Handles bioregional evaluation and intervention strategies.
"""
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
from abc import ABC, abstractmethod
from .state_spaces import BioregionalState
from .observation import ObservationModel, HierarchicalObservation
from .transition import TransitionModel, HierarchicalTransition
@dataclass
class Intervention:
"""Represents a bioregional intervention."""
name: str
type: str # PROTECT, RESTORE, ENHANCE, TRANSFORM
target_variables: List[str]
scale: str
duration: float
intensity: float
resources: Dict[str, float]
stakeholders: List[str]
expected_outcomes: Dict[str, float]
uncertainty: float
constraints: Dict[str, Any]
@dataclass
class StewardshipMetrics:
"""Comprehensive bioregional performance tracking."""
ecological_metrics: Dict[str, float] = field(default_factory=lambda: {
"biodiversity_index": 0.0,
"ecosystem_health": 0.0,
"habitat_connectivity": 0.0,
"species_persistence": 0.0,
"ecological_resilience": 0.0
})
climate_metrics: Dict[str, float] = field(default_factory=lambda: {
"carbon_sequestration": 0.0,
"water_regulation": 0.0,
"microclimate_stability": 0.0,
"extreme_event_buffer": 0.0
})
social_metrics: Dict[str, float] = field(default_factory=lambda: {
"community_participation": 0.0,
"knowledge_integration": 0.0,
"cultural_preservation": 0.0,
"governance_effectiveness": 0.0
})
economic_metrics: Dict[str, float] = field(default_factory=lambda: {
"sustainable_value": 0.0,
"resource_efficiency": 0.0,
"green_jobs": 0.0,
"ecosystem_services_value": 0.0
})
stewardship_metrics: Dict[str, float] = field(default_factory=lambda: {
"management_effectiveness": 0.0,
"stakeholder_engagement": 0.0,
"adaptive_capacity": 0.0,
"cross_scale_coordination": 0.0
})
class StewardshipMode(ABC):
"""Abstract base class for stewardship modes."""
@abstractmethod
def evaluate_state(self,
current_state: BioregionalState,
target_state: BioregionalState) -> float:
"""Evaluate current state against stewardship goals."""
pass
@abstractmethod
def propose_interventions(self,
state: BioregionalState,
constraints: Dict[str, Any]) -> List[Intervention]:
"""Propose context-appropriate interventions."""
pass
class AdaptiveComanagement(StewardshipMode):
"""Implements adaptive comanagement stewardship approach."""
def __init__(self,
stakeholder_weights: Dict[str, float],
learning_rate: float = 0.1):
self.stakeholder_weights = stakeholder_weights
self.learning_rate = learning_rate
self.intervention_history: List[Tuple[Intervention, float]] = []
def evaluate_state(self,
current_state: BioregionalState,
target_state: BioregionalState) -> float:
"""Evaluate state using weighted stakeholder preferences."""
# Convert states to vectors
current_vec = current_state.to_vector()
target_vec = target_state.to_vector()
# Calculate weighted evaluation
evaluation = 0.0
for stakeholder, weight in self.stakeholder_weights.items():
stakeholder_eval = self._stakeholder_evaluation(
current_vec, target_vec, stakeholder
)
evaluation += weight * stakeholder_eval
return evaluation
def _stakeholder_evaluation(self,
current: np.ndarray,
target: np.ndarray,
stakeholder: str) -> float:
"""Compute stakeholder-specific evaluation."""
# Could be customized per stakeholder type
return -np.sum((current - target) ** 2)
def propose_interventions(self,
state: BioregionalState,
constraints: Dict[str, Any]) -> List[Intervention]:
"""Propose interventions based on collective knowledge."""
proposed = []
# Consider past successful interventions
successful_patterns = self._analyze_history()
# Generate candidate interventions
candidates = self._generate_candidates(state, successful_patterns)
# Filter by constraints
for candidate in candidates:
if self._satisfies_constraints(candidate, constraints):
proposed.append(candidate)
return proposed
def _analyze_history(self) -> Dict[str, float]:
"""Analyze intervention history for patterns."""
if not self.intervention_history:
return {}
patterns = {}
for intervention, outcome in self.intervention_history:
key = f"{intervention.type}_{intervention.scale}"
if key not in patterns:
patterns[key] = []
patterns[key].append(outcome)
return {k: np.mean(v) for k, v in patterns.items()}
def _generate_candidates(self,
state: BioregionalState,
patterns: Dict[str, float]) -> List[Intervention]:
"""Generate candidate interventions."""
candidates = []
# Generate based on state assessment
if state.ecological_state["biodiversity"] < 0.5:
candidates.append(
Intervention(
name="Biodiversity Enhancement",
type="ENHANCE",
target_variables=["biodiversity", "habitat_connectivity"],
scale="local",
duration=2.0,
intensity=0.7,
resources={"budget": 100000, "staff_hours": 2000},
stakeholders=["local_communities", "scientists"],
expected_outcomes={"biodiversity": 0.2},
uncertainty=0.3,
constraints={"social_acceptance": 0.8}
)
)
# Add more candidates based on patterns
for pattern, success_rate in patterns.items():
if success_rate > 0.7: # High success threshold
intervention_type, scale = pattern.split("_")
candidates.append(
self._create_intervention_from_pattern(
intervention_type, scale, state
)
)
return candidates
def _satisfies_constraints(self,
intervention: Intervention,
constraints: Dict[str, Any]) -> bool:
"""Check if intervention satisfies constraints."""
if "budget_limit" in constraints:
if intervention.resources["budget"] > constraints["budget_limit"]:
return False
if "time_horizon" in constraints:
if intervention.duration > float(constraints["time_horizon"][:-1]):
return False
if "social_acceptance" in constraints:
if intervention.constraints["social_acceptance"] < constraints["social_acceptance"]:
return False
return True
def _create_intervention_from_pattern(self,
intervention_type: str,
scale: str,
state: BioregionalState) -> Intervention:
"""Create intervention based on successful pattern."""
# Template method - could be customized
return Intervention(
name=f"{intervention_type} at {scale}",
type=intervention_type,
target_variables=self._select_targets(state),
scale=scale,
duration=1.0,
intensity=0.5,
resources={"budget": 50000, "staff_hours": 1000},
stakeholders=list(self.stakeholder_weights.keys()),
expected_outcomes=self._estimate_outcomes(state),
uncertainty=0.4,
constraints={"social_acceptance": 0.7}
)
def _select_targets(self, state: BioregionalState) -> List[str]:
"""Select intervention targets based on state."""
targets = []
# Add variables below threshold
for domain in ["ecological", "climate", "social", "economic"]:
state_dict = getattr(state, f"{domain}_state")
for var, value in state_dict.items():
if value < 0.4: # Low performance threshold
targets.append(f"{domain}.{var}")
return targets[:3] # Limit to top 3 targets
def _estimate_outcomes(self, state: BioregionalState) -> Dict[str, float]:
"""Estimate intervention outcomes."""
outcomes = {}
# Simple improvement estimates
for domain in ["ecological", "climate", "social", "economic"]:
state_dict = getattr(state, f"{domain}_state")
for var, value in state_dict.items():
if value < 0.7: # Room for improvement
outcomes[f"{domain}.{var}"] = min(0.2, 1.0 - value)
return outcomes
class BioregionalStewardship:
"""Main stewardship coordination class."""
def __init__(self,
observation_model: HierarchicalObservation,
transition_model: HierarchicalTransition,
stewardship_mode: StewardshipMode):
self.observation_model = observation_model
self.transition_model = transition_model
self.stewardship_mode = stewardship_mode
self.metrics = StewardshipMetrics()
def evaluate_system(self,
states: Dict[str, BioregionalState],
target_states: Dict[str, BioregionalState]
) -> Dict[str, float]:
"""Evaluate system state across scales."""
evaluations = {}
for scale, state in states.items():
evaluations[scale] = self.stewardship_mode.evaluate_state(
state, target_states[scale]
)
return evaluations
def plan_interventions(self,
states: Dict[str, BioregionalState],
constraints: Dict[str, Any]
) -> Dict[str, List[Intervention]]:
"""Plan interventions across scales."""
interventions = {}
for scale, state in states.items():
scale_constraints = self._adjust_constraints(constraints, scale)
interventions[scale] = self.stewardship_mode.propose_interventions(
state, scale_constraints
)
return interventions
def _adjust_constraints(self,
constraints: Dict[str, Any],
scale: str) -> Dict[str, Any]:
"""Adjust constraints based on scale."""
scale_factors = {
"local": 0.2,
"landscape": 0.3,
"regional": 0.5,
"bioregional": 1.0
}
adjusted = constraints.copy()
if "budget_limit" in adjusted:
adjusted["budget_limit"] *= scale_factors[scale]
return adjusted
def update_metrics(self,
states: Dict[str, BioregionalState],
interventions: Dict[str, List[Intervention]]):
"""Update stewardship metrics."""
# Update ecological metrics
self.metrics.ecological_metrics.update(
self._compute_ecological_metrics(states)
)
# Update climate metrics
self.metrics.climate_metrics.update(
self._compute_climate_metrics(states)
)
# Update social metrics
self.metrics.social_metrics.update(
self._compute_social_metrics(states, interventions)
)
# Update economic metrics
self.metrics.economic_metrics.update(
self._compute_economic_metrics(states, interventions)
)
# Update stewardship metrics
self.metrics.stewardship_metrics.update(
self._compute_stewardship_metrics(states, interventions)
)
def _compute_ecological_metrics(self,
states: Dict[str, BioregionalState]
) -> Dict[str, float]:
"""Compute ecological metrics across scales."""
metrics = {}
# Aggregate across scales
biodiversity = np.mean([
state.ecological_state["biodiversity"]
for state in states.values()
])
metrics["biodiversity_index"] = biodiversity
# Add other ecological metrics
return metrics
def _compute_climate_metrics(self,
states: Dict[str, BioregionalState]
) -> Dict[str, float]:
"""Compute climate metrics across scales."""
metrics = {}
# Aggregate across scales
carbon = np.mean([
state.climate_state["carbon_storage"]
for state in states.values()
])
metrics["carbon_sequestration"] = carbon
# Add other climate metrics
return metrics
def _compute_social_metrics(self,
states: Dict[str, BioregionalState],
interventions: Dict[str, List[Intervention]]
) -> Dict[str, float]:
"""Compute social metrics."""
metrics = {}
# Calculate participation
participation = np.mean([
state.social_state["community_engagement"]
for state in states.values()
])
metrics["community_participation"] = participation
# Add other social metrics
return metrics
def _compute_economic_metrics(self,
states: Dict[str, BioregionalState],
interventions: Dict[str, List[Intervention]]
) -> Dict[str, float]:
"""Compute economic metrics."""
metrics = {}
# Calculate sustainable value
value = np.mean([
state.economic_state["sustainable_livelihoods"]
for state in states.values()
])
metrics["sustainable_value"] = value
# Add other economic metrics
return metrics
def _compute_stewardship_metrics(self,
states: Dict[str, BioregionalState],
interventions: Dict[str, List[Intervention]]
) -> Dict[str, float]:
"""Compute stewardship effectiveness metrics."""
metrics = {}
# Calculate management effectiveness
n_interventions = sum(len(i) for i in interventions.values())
if n_interventions > 0:
effectiveness = np.mean([
intervention.expected_outcomes.get("success_rate", 0.5)
for scale_interventions in interventions.values()
for intervention in scale_interventions
])
metrics["management_effectiveness"] = effectiveness
# Add other stewardship metrics
return metrics

215
knowledge_base/BioFirm/core/transition.py Обычный файл
Просмотреть файл

@ -0,0 +1,215 @@
"""
Transition model implementation for BioFirm framework.
Handles state evolution and action effects.
"""
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from scipy.stats import multivariate_normal
from .state_spaces import StateSpace, BioregionalState
@dataclass
class TransitionModel:
"""Dynamic transition model for state evolution."""
state_space: StateSpace
action_space: StateSpace
transition_matrices: Dict[str, np.ndarray] # B matrices
temporal_horizon: int
control_modes: List[str] = ["homeostatic", "goal_directed", "exploratory"]
def __post_init__(self):
"""Validate transition model configuration."""
self._validate_spaces()
self._validate_matrices()
self._setup_control_modes()
def _validate_spaces(self):
"""Ensure state and action spaces are compatible."""
if not isinstance(self.state_space, StateSpace):
raise TypeError("state_space must be a StateSpace instance")
if not isinstance(self.action_space, StateSpace):
raise TypeError("action_space must be a StateSpace instance")
def _validate_matrices(self):
"""Validate transition matrices."""
state_dim = np.prod(self.state_space.dimensions)
for action, matrix in self.transition_matrices.items():
if matrix.shape != (state_dim, state_dim):
raise ValueError(
f"Transition matrix for action {action} has invalid shape "
f"{matrix.shape}, expected ({state_dim}, {state_dim})"
)
def _setup_control_modes(self):
"""Configure control modes."""
if not all(mode in self.VALID_MODES for mode in self.control_modes):
raise ValueError(f"Invalid control mode in {self.control_modes}")
VALID_MODES = {
"homeostatic": lambda s, g: -np.sum((s - g) ** 2),
"goal_directed": lambda s, g: -np.sum(np.abs(s - g)),
"exploratory": lambda s, _: -np.sum(s * np.log(s + 1e-10))
}
def predict_next_state(self,
current_state: BioregionalState,
action: str,
noise_scale: float = 0.1) -> BioregionalState:
"""Predict next state given current state and action."""
# Get transition matrix for action
if action not in self.transition_matrices:
raise ValueError(f"Invalid action: {action}")
B = self.transition_matrices[action]
# Convert state to vector
state_vector = current_state.to_vector()
# Apply transition
next_state_vector = np.dot(B, state_vector)
# Add noise
noise = np.random.normal(0, noise_scale, size=len(next_state_vector))
next_state_vector += noise
# Ensure bounds
next_state_vector = np.clip(next_state_vector, 0, 1)
# Convert back to BioregionalState
return BioregionalState.from_vector(next_state_vector)
def evaluate_action(self,
current_state: BioregionalState,
goal_state: BioregionalState,
action: str,
mode: str = "homeostatic") -> float:
"""Evaluate action using specified control mode."""
if mode not in self.VALID_MODES:
raise ValueError(f"Invalid control mode: {mode}")
# Predict next state
predicted_next = self.predict_next_state(current_state, action)
# Evaluate using control mode
return self.VALID_MODES[mode](
predicted_next.to_vector(),
goal_state.to_vector()
)
def get_optimal_action(self,
current_state: BioregionalState,
goal_state: BioregionalState,
mode: str = "homeostatic") -> str:
"""Get optimal action using specified control mode."""
action_values = {
action: self.evaluate_action(current_state, goal_state, action, mode)
for action in self.transition_matrices.keys()
}
return max(action_values.items(), key=lambda x: x[1])[0]
class HierarchicalTransition:
"""Hierarchical transition model for multi-scale dynamics."""
def __init__(self,
models: Dict[str, TransitionModel],
scale_couplings: Dict[Tuple[str, str], float]):
"""
Initialize hierarchical transition model.
Args:
models: Dictionary mapping scales to TransitionModels
scale_couplings: Dictionary mapping scale pairs to coupling strengths
"""
self.models = models
self.scale_couplings = scale_couplings
self._validate_configuration()
def _validate_configuration(self):
"""Validate hierarchical model configuration."""
# Validate models
if not all(isinstance(m, TransitionModel) for m in self.models.values()):
raise TypeError("All models must be TransitionModel instances")
# Validate couplings
scales = set(self.models.keys())
for (scale1, scale2) in self.scale_couplings.keys():
if scale1 not in scales or scale2 not in scales:
raise ValueError(f"Invalid scales in coupling: {scale1}, {scale2}")
def predict_hierarchy(self,
current_states: Dict[str, BioregionalState],
actions: Dict[str, str]) -> Dict[str, BioregionalState]:
"""Predict next states across hierarchy."""
# First pass: independent predictions
next_states = {
scale: self.models[scale].predict_next_state(
current_states[scale], actions[scale]
)
for scale in self.models.keys()
}
# Second pass: apply cross-scale coupling
coupled_states = next_states.copy()
for (scale1, scale2), coupling in self.scale_couplings.items():
# Convert states to vectors for coupling
v1 = next_states[scale1].to_vector()
v2 = next_states[scale2].to_vector()
# Apply coupling
coupled_v1 = (1 - coupling) * v1 + coupling * v2
# Convert back to BioregionalState
coupled_states[scale1] = BioregionalState.from_vector(coupled_v1)
return coupled_states
class EcologicalConstraints:
"""Enforces ecological constraints on transitions."""
def __init__(self, constraints: Dict[str, Dict[str, float]]):
"""
Initialize constraints.
Args:
constraints: Dictionary mapping variable pairs to min/max ratios
"""
self.constraints = constraints
def apply_constraints(self, state: BioregionalState) -> BioregionalState:
"""Apply ecological constraints to state."""
# Convert to modifiable form
state_dict = {
"ecological": state.ecological_state.copy(),
"climate": state.climate_state.copy(),
"social": state.social_state.copy(),
"economic": state.economic_state.copy()
}
# Apply each constraint
for (var1, var2), limits in self.constraints.items():
domain1, var1_name = var1.split(".")
domain2, var2_name = var2.split(".")
value1 = state_dict[domain1][var1_name]
value2 = state_dict[domain2][var2_name]
ratio = value1 / (value2 + 1e-10)
if ratio < limits["min"]:
# Increase value1 or decrease value2
adjustment = limits["min"] * value2 - value1
state_dict[domain1][var1_name] += adjustment
elif ratio > limits["max"]:
# Decrease value1 or increase value2
adjustment = value1 - limits["max"] * value2
state_dict[domain1][var1_name] -= adjustment
# Create new constrained state
return BioregionalState(
ecological_state=state_dict["ecological"],
climate_state=state_dict["climate"],
social_state=state_dict["social"],
economic_state=state_dict["economic"]
)

Просмотреть файл

@ -0,0 +1,194 @@
# [[Ecological Active Inference]]
## Overview
This document details the application of [[Active Inference|Active Inference]] principles to ecological systems within the [[BioFirm Framework|BioFirm]] context. It focuses on how the [[Active Inference/Free Energy Principle|Free Energy Principle]] can be used to understand and manage complex ecological dynamics.
## Theoretical Framework
### 1. [[Active Inference/Ecological States|Ecological State Space]]
- **State Variables**
- Biodiversity metrics
- Ecosystem functions
- Resource availability
- Species interactions
- **Observation Model**
- Monitoring data
- Sensor networks
- Citizen science
- Remote sensing
### 2. [[Active Inference/Ecological Dynamics|Ecological Dynamics]]
```python
class EcologicalDynamics:
"""Models ecological system dynamics using active inference"""
def __init__(self):
self.state_space = EcologicalStateSpace()
self.transition_model = EcosystemTransitions()
self.observation_model = MonitoringSystem()
def predict_dynamics(self, current_state, intervention=None):
"""Predict future ecological states"""
# Implement transition dynamics
# Account for interventions
# Consider uncertainty
```
### 3. [[Active Inference/Ecological Inference|Ecological Inference]]
- **Belief Updating**
- Species distribution models
- Population dynamics
- Ecosystem services
- **Uncertainty Handling**
- Environmental stochasticity
- Observation uncertainty
- Model uncertainty
## Implementation Details
### 1. [[Active Inference/Ecological Control|Ecological Control]]
```python
class EcologicalController:
"""Active inference-based ecological management"""
def __init__(self):
self.state_estimator = StateEstimator()
self.policy_selector = PolicySelector()
self.intervention_planner = InterventionPlanner()
def select_management_action(self, observations):
"""Select optimal management actions"""
# Update ecological beliefs
# Evaluate intervention options
# Choose optimal policy
```
### 2. [[Active Inference/Ecological Learning|Ecological Learning]]
- **Model Adaptation**
- Parameter updating
- Structure learning
- Response adaptation
- **Knowledge Integration**
- Scientific knowledge
- Traditional knowledge
- Management experience
### 3. [[Active Inference/Ecological Resilience|Ecological Resilience]]
- **Stability Metrics**
- System redundancy
- Response diversity
- Recovery capacity
- **Adaptation Mechanisms**
- Functional compensation
- Species turnover
- Ecosystem engineering
## Applications
### 1. Conservation Planning
- **Habitat Management**
- Protected area design
- Corridor connectivity
- Restoration planning
- **Species Protection**
- Population viability
- Threat mitigation
- Recovery planning
### 2. Ecosystem Services
- **Service Provision**
- Pollination services
- Water regulation
- Carbon sequestration
- **Service Management**
- Capacity enhancement
- Risk reduction
- Trade-off optimization
### 3. Adaptive Management
- **Monitoring Design**
- Indicator selection
- Sampling strategies
- Data integration
- **Intervention Planning**
- Action prioritization
- Implementation timing
- Effect evaluation
## Mathematical Framework
### 1. Ecological Free Energy
```math
F_{eco} = E_q[ln q(s_{eco}) - ln p(s_{eco},o_{eco})]
```
where:
- s_{eco}: Ecological states
- o_{eco}: Ecological observations
- q(s_{eco}): Beliefs about ecological states
- p(s_{eco},o_{eco}): Ecological generative model
### 2. Ecosystem Dynamics
```math
ds_{eco}/dt = f(s_{eco}) + g(s_{eco})dW + c(a_{eco})
```
where:
- f(s_{eco}): Intrinsic dynamics
- g(s_{eco})dW: Environmental noise
- c(a_{eco}): Management actions
### 3. Management Objectives
```math
G_{eco} = E_q[ln q(s'_{eco}) - ln p(s'_{eco},o'_{eco},c)]
```
where:
- s'_{eco}: Future ecological states
- o'_{eco}: Expected observations
- c: Conservation objectives
## Integration with Other Domains
### 1. Climate Integration
- Temperature effects
- Precipitation patterns
- Extreme events
- Adaptation strategies
### 2. Social Integration
- Community involvement
- Traditional practices
- Stakeholder objectives
- Governance systems
### 3. Economic Integration
- Ecosystem valuation
- Resource allocation
- Cost-benefit analysis
- Sustainable use
## Future Directions
### 1. Research Priorities
- Model refinement
- Uncertainty reduction
- Scale integration
- Process understanding
### 2. Management Implications
- Policy design
- Implementation strategies
- Monitoring programs
- Adaptive responses
### 3. Technology Integration
- Sensor networks
- Data analytics
- Decision support
- Automation systems
## See Also
- [[Active Inference]]
- [[Ecological Modeling]]
- [[BioFirm Framework]]
- [[Bioregional State Space]]
- [[Ecosystem Management]]
- [[Conservation Biology]]
- [[Resilience Theory]]

Просмотреть файл

@ -0,0 +1,225 @@
# [[Socioeconomic Active Inference]]
## Overview
This document outlines the application of [[Active Inference|Active Inference]] principles to socioeconomic systems within the [[BioFirm Framework|BioFirm]]. It demonstrates how the [[Active Inference/Free Energy Principle|Free Energy Principle]] can be used to understand and guide social and economic dynamics in bioregional contexts.
## Theoretical Framework
### 1. [[Active Inference/Social States|Social State Space]]
- **Community Dynamics**
- Social networks
- Cultural practices
- Knowledge systems
- Governance structures
- **Economic Variables**
- Resource flows
- Value creation
- Market dynamics
- Investment patterns
### 2. [[Active Inference/Socioeconomic Dynamics|Socioeconomic Dynamics]]
```python
class SocioeconomicDynamics:
"""Models socioeconomic system dynamics using active inference"""
def __init__(self):
self.social_space = SocialStateSpace()
self.economic_space = EconomicStateSpace()
self.interaction_model = SocioeconomicInteractions()
def predict_dynamics(self, current_state, policy=None):
"""Predict future socioeconomic states"""
# Model social changes
# Project economic outcomes
# Account for policy effects
```
### 3. [[Active Inference/Social Learning|Social Learning]]
- **Knowledge Integration**
- Traditional knowledge
- Scientific understanding
- Practical experience
- **Adaptive Capacity**
- Learning mechanisms
- Innovation processes
- Knowledge transfer
## Implementation Framework
### 1. [[Active Inference/Social Control|Social Control]]
```python
class SocialController:
"""Active inference-based social system management"""
def __init__(self):
self.community_model = CommunityModel()
self.governance_system = GovernanceSystem()
self.policy_evaluator = PolicyEvaluator()
def evaluate_policy(self, current_state, proposed_policy):
"""Evaluate policy impacts"""
# Assess social implications
# Project economic effects
# Consider equity impacts
```
### 2. [[Active Inference/Economic Control|Economic Control]]
```python
class EconomicController:
"""Active inference-based economic system management"""
def __init__(self):
self.market_model = MarketModel()
self.resource_allocator = ResourceAllocator()
self.value_optimizer = ValueOptimizer()
def optimize_allocation(self, resources, objectives):
"""Optimize resource allocation"""
# Balance objectives
# Consider constraints
# Maximize value creation
```
### 3. [[Active Inference/Socioeconomic Learning|Socioeconomic Learning]]
- **System Adaptation**
- Policy learning
- Market adaptation
- Social innovation
- **Knowledge Management**
- Experience capture
- Best practices
- Success patterns
## Applications
### 1. Community Development
- **Social Capital**
- Network building
- Trust development
- Collective action
- **Capacity Building**
- Skill development
- Knowledge sharing
- Leadership growth
### 2. Economic Development
- **Sustainable Enterprise**
- Green business
- Social enterprise
- Circular economy
- **Value Creation**
- Natural capital
- Social capital
- Economic capital
### 3. Governance Systems
- **Decision Making**
- Participatory processes
- Evidence-based policy
- Adaptive management
- **Implementation**
- Policy deployment
- Program management
- Impact assessment
## Mathematical Framework
### 1. Social Free Energy
```math
F_{soc} = E_q[ln q(s_{soc}) - ln p(s_{soc},o_{soc})]
```
where:
- s_{soc}: Social states
- o_{soc}: Social observations
- q(s_{soc}): Beliefs about social states
- p(s_{soc},o_{soc}): Social generative model
### 2. Economic Free Energy
```math
F_{eco} = E_q[ln q(s_{econ}) - ln p(s_{econ},o_{econ})]
```
where:
- s_{econ}: Economic states
- o_{econ}: Economic observations
- q(s_{econ}): Beliefs about economic states
- p(s_{econ},o_{econ}): Economic generative model
### 3. Policy Selection
```math
π* = argmin_π [G_{soc}(π) + G_{econ}(π)]
```
where:
- G_{soc}: Social expected free energy
- G_{econ}: Economic expected free energy
- π: Policy options
## Integration Mechanisms
### 1. Ecological Integration
- **Resource Management**
- Sustainable use
- Conservation incentives
- Ecosystem services
- **Impact Assessment**
- Environmental effects
- Social impacts
- Economic viability
### 2. Cultural Integration
- **Value Systems**
- Cultural practices
- Traditional knowledge
- Social norms
- **Behavioral Change**
- Sustainable practices
- Community engagement
- Social learning
### 3. Institutional Integration
- **Governance Structures**
- Policy frameworks
- Regulatory systems
- Market mechanisms
- **Organizational Learning**
- Capacity building
- Knowledge management
- Innovation systems
## Future Directions
### 1. Research Development
- **Methodological Advances**
- Measurement systems
- Analysis frameworks
- Integration tools
- **Theory Building**
- Model refinement
- Framework extension
- Application testing
### 2. Practice Enhancement
- **Implementation Tools**
- Decision support
- Monitoring systems
- Evaluation frameworks
- **Capacity Development**
- Training programs
- Knowledge resources
- Practice guides
### 3. System Innovation
- **Social Innovation**
- New institutions
- Novel practices
- Emerging models
- **Economic Innovation**
- Business models
- Market mechanisms
- Value systems
## See Also
- [[Active Inference]]
- [[BioFirm Framework]]
- [[Social Systems]]
- [[Economic Systems]]
- [[Governance Systems]]
- [[Community Development]]
- [[Sustainable Economics]]

Просмотреть файл

@ -0,0 +1,324 @@
"""
Visualization implementation for BioFirm framework.
Provides comprehensive plotting and visualization tools.
"""
from typing import Dict, List, Optional, Tuple, Union, Any
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib.figure import Figure
import networkx as nx
from scipy.stats import gaussian_kde
from ..core.state_spaces import BioregionalState
from ..core.stewardship import Intervention, StewardshipMetrics
class BioregionalVisualization:
"""Comprehensive bioregional visualization tools."""
def __init__(self, style: str = "seaborn-whitegrid"):
"""Initialize visualization suite with style."""
plt.style.use(style)
self.colors = sns.color_palette("husl", 8)
def plot_system_state(self,
bioregional_state: BioregionalState,
time_series: Optional[np.ndarray] = None
) -> Figure:
"""Visualize multi-dimensional system state."""
fig = plt.figure(figsize=(15, 10))
if time_series is not None:
# Plot time series
self._plot_time_series(fig, time_series, bioregional_state)
else:
# Plot current state
self._plot_current_state(fig, bioregional_state)
plt.tight_layout()
return fig
def _plot_time_series(self,
fig: Figure,
time_series: np.ndarray,
state: BioregionalState):
"""Plot time series of state variables."""
gs = fig.add_gridspec(2, 2)
# Ecological time series
ax1 = fig.add_subplot(gs[0, 0])
self._plot_domain_time_series(
ax1, time_series, state.ecological_state,
"Ecological Metrics", self.colors[0]
)
# Climate time series
ax2 = fig.add_subplot(gs[0, 1])
self._plot_domain_time_series(
ax2, time_series, state.climate_state,
"Climate Metrics", self.colors[1]
)
# Social time series
ax3 = fig.add_subplot(gs[1, 0])
self._plot_domain_time_series(
ax3, time_series, state.social_state,
"Social Metrics", self.colors[2]
)
# Economic time series
ax4 = fig.add_subplot(gs[1, 1])
self._plot_domain_time_series(
ax4, time_series, state.economic_state,
"Economic Metrics", self.colors[3]
)
def _plot_domain_time_series(self,
ax: plt.Axes,
time_series: np.ndarray,
state_dict: Dict[str, float],
title: str,
color: Tuple[float, float, float]):
"""Plot time series for a specific domain."""
for i, (var, _) in enumerate(state_dict.items()):
ax.plot(time_series[:, i],
label=var,
color=color,
alpha=0.5 + 0.5 * i/len(state_dict))
ax.set_title(title)
ax.set_xlabel("Time")
ax.set_ylabel("Value")
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
ax.grid(True, alpha=0.3)
def _plot_current_state(self, fig: Figure, state: BioregionalState):
"""Plot current state as radar charts."""
gs = fig.add_gridspec(2, 2)
# Ecological radar
ax1 = fig.add_subplot(gs[0, 0], projection='polar')
self._plot_domain_radar(
ax1, state.ecological_state,
"Ecological State", self.colors[0]
)
# Climate radar
ax2 = fig.add_subplot(gs[0, 1], projection='polar')
self._plot_domain_radar(
ax2, state.climate_state,
"Climate State", self.colors[1]
)
# Social radar
ax3 = fig.add_subplot(gs[1, 0], projection='polar')
self._plot_domain_radar(
ax3, state.social_state,
"Social State", self.colors[2]
)
# Economic radar
ax4 = fig.add_subplot(gs[1, 1], projection='polar')
self._plot_domain_radar(
ax4, state.economic_state,
"Economic State", self.colors[3]
)
def _plot_domain_radar(self,
ax: plt.Axes,
state_dict: Dict[str, float],
title: str,
color: Tuple[float, float, float]):
"""Plot radar chart for a specific domain."""
variables = list(state_dict.keys())
values = list(state_dict.values())
angles = np.linspace(0, 2*np.pi, len(variables), endpoint=False)
values = np.concatenate((values, [values[0]])) # complete the loop
angles = np.concatenate((angles, [angles[0]])) # complete the loop
ax.plot(angles, values, color=color, linewidth=2)
ax.fill(angles, values, color=color, alpha=0.25)
ax.set_xticks(angles[:-1])
ax.set_xticklabels(variables)
ax.set_title(title)
def plot_intervention_impacts(self,
before_state: BioregionalState,
after_state: BioregionalState,
intervention_data: Dict[str, Any]) -> Figure:
"""Visualize intervention outcomes."""
fig = plt.figure(figsize=(15, 10))
gs = fig.add_gridspec(2, 2)
# State changes
ax1 = fig.add_subplot(gs[0, :])
self._plot_state_changes(ax1, before_state, after_state)
# Intervention details
ax2 = fig.add_subplot(gs[1, 0])
self._plot_intervention_details(ax2, intervention_data)
# Uncertainty analysis
ax3 = fig.add_subplot(gs[1, 1])
self._plot_uncertainty_analysis(ax3, intervention_data)
plt.tight_layout()
return fig
def _plot_state_changes(self,
ax: plt.Axes,
before: BioregionalState,
after: BioregionalState):
"""Plot before/after state changes."""
variables = []
before_values = []
after_values = []
# Collect all variables and values
for domain in ["ecological", "climate", "social", "economic"]:
before_dict = getattr(before, f"{domain}_state")
after_dict = getattr(after, f"{domain}_state")
for var in before_dict.keys():
variables.append(f"{domain}.{var}")
before_values.append(before_dict[var])
after_values.append(after_dict[var])
# Plot
x = np.arange(len(variables))
width = 0.35
ax.bar(x - width/2, before_values, width, label='Before',
color='lightgray')
ax.bar(x + width/2, after_values, width, label='After',
color='darkgreen')
ax.set_ylabel('Value')
ax.set_title('State Changes from Intervention')
ax.set_xticks(x)
ax.set_xticklabels(variables, rotation=45, ha='right')
ax.legend()
def _plot_intervention_details(self,
ax: plt.Axes,
intervention_data: Dict[str, Any]):
"""Plot intervention details."""
# Extract key metrics
metrics = {
'Duration': intervention_data.get('duration', 0),
'Intensity': intervention_data.get('intensity', 0),
'Cost': intervention_data.get('resources', {}).get('budget', 0),
'Success Prob': 1 - intervention_data.get('uncertainty', 0)
}
# Create horizontal bar chart
y_pos = np.arange(len(metrics))
ax.barh(y_pos, list(metrics.values()))
ax.set_yticks(y_pos)
ax.set_yticklabels(list(metrics.keys()))
ax.set_title('Intervention Metrics')
def _plot_uncertainty_analysis(self,
ax: plt.Axes,
intervention_data: Dict[str, Any]):
"""Plot uncertainty analysis."""
# Generate synthetic uncertainty data
outcomes = intervention_data.get('expected_outcomes', {})
uncertainties = np.random.normal(
loc=list(outcomes.values()),
scale=intervention_data.get('uncertainty', 0.1),
size=(1000, len(outcomes))
)
# Plot density
for i, (var, _) in enumerate(outcomes.items()):
density = gaussian_kde(uncertainties[:, i])
xs = np.linspace(0, 1, 200)
ax.plot(xs, density(xs), label=var)
ax.set_title('Outcome Uncertainty')
ax.set_xlabel('Value')
ax.set_ylabel('Density')
ax.legend()
def plot_cross_scale_dynamics(self,
states: Dict[str, np.ndarray],
scales: List[str],
interactions: np.ndarray) -> Figure:
"""Visualize cross-scale ecological dynamics."""
fig = plt.figure(figsize=(15, 10))
# Network visualization
ax1 = fig.add_subplot(121)
self._plot_scale_network(ax1, scales, interactions)
# Scale correlations
ax2 = fig.add_subplot(122)
self._plot_scale_correlations(ax2, states, scales)
plt.tight_layout()
return fig
def _plot_scale_network(self,
ax: plt.Axes,
scales: List[str],
interactions: np.ndarray):
"""Plot network of cross-scale interactions."""
G = nx.DiGraph()
# Add nodes
for scale in scales:
G.add_node(scale)
# Add edges
n_scales = len(scales)
for i in range(n_scales):
for j in range(n_scales):
if i != j and interactions[i, j] > 0:
G.add_edge(scales[i], scales[j],
weight=interactions[i, j])
# Draw network
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos, node_color='lightblue',
node_size=1000, ax=ax)
nx.draw_networkx_labels(G, pos, ax=ax)
edges = nx.draw_networkx_edges(
G, pos,
edge_color=[G[u][v]['weight'] for u, v in G.edges()],
edge_cmap=plt.cm.YlOrRd,
width=2,
ax=ax
)
plt.colorbar(edges, ax=ax, label='Interaction Strength')
ax.set_title('Cross-scale Interactions')
def _plot_scale_correlations(self,
ax: plt.Axes,
states: Dict[str, np.ndarray],
scales: List[str]):
"""Plot correlations between scales."""
n_scales = len(scales)
correlations = np.zeros((n_scales, n_scales))
# Compute correlations
for i, scale1 in enumerate(scales):
for j, scale2 in enumerate(scales):
if i != j:
corr = np.corrcoef(
states[scale1].mean(axis=1),
states[scale2].mean(axis=1)
)[0, 1]
correlations[i, j] = corr
# Plot heatmap
sns.heatmap(correlations,
xticklabels=scales,
yticklabels=scales,
cmap='RdBu_r',
vmin=-1, vmax=1,
ax=ax)
ax.set_title('Cross-scale Correlations')

Просмотреть файл

@ -1,356 +0,0 @@
# BioFirm Active Inference Schema
## Core Abstractions
### [[State Space Abstraction]]
```python
@dataclass
class StateSpace:
"""Abstract representation of state spaces in active inference models."""
dimensions: List[int]
labels: Dict[str, List[str]]
mappings: Dict[str, np.ndarray]
hierarchical_levels: Optional[int] = 1
scale: Optional[str] = None # spatial scale of the state space
temporal_resolution: Optional[str] = None # temporal resolution
```
### [[Bioregional State Space]]
```python
@dataclass
class BioregionalState:
"""Comprehensive bioregional state representation."""
ecological_state: Dict[str, float] = field(default_factory=lambda: {
"biodiversity": 0.0,
"habitat_connectivity": 0.0,
"ecosystem_services": 0.0,
"species_richness": 0.0,
"ecological_integrity": 0.0
})
climate_state: Dict[str, float] = field(default_factory=lambda: {
"temperature": 0.0,
"precipitation": 0.0,
"carbon_storage": 0.0,
"albedo": 0.0,
"extreme_events": 0.0
})
social_state: Dict[str, float] = field(default_factory=lambda: {
"community_engagement": 0.0,
"traditional_knowledge": 0.0,
"stewardship_practices": 0.0,
"resource_governance": 0.0,
"social_resilience": 0.0
})
economic_state: Dict[str, float] = field(default_factory=lambda: {
"sustainable_livelihoods": 0.0,
"circular_economy": 0.0,
"ecosystem_valuation": 0.0,
"green_infrastructure": 0.0,
"resource_efficiency": 0.0
})
```
### [[Observation Model]]
```python
@dataclass
class ObservationModel:
"""Generalized observation model for active inference."""
state_space: StateSpace
observation_space: StateSpace
likelihood_matrix: np.ndarray # A matrix
noise_model: str = "gaussian"
precision: float = 1.0
```
### [[Transition Model]]
```python
@dataclass
class TransitionModel:
"""Dynamic transition model for state evolution."""
state_space: StateSpace
action_space: StateSpace
transition_matrices: Dict[str, np.ndarray] # B matrices
temporal_horizon: int
control_modes: List[str] = ["homeostatic", "goal_directed", "exploratory"]
```
## Homeostatic Control Framework
### 1. [[System Definition]]
```yaml
system:
name: "BioFirm"
type: "bioregional_stewardship"
state_spaces:
bioregional:
dimensions: [20] # Combined dimensions from ecological, climate, social, economic states
type: "continuous"
bounds: [0.0, 1.0]
scales: ["local", "landscape", "regional", "bioregional"]
observation:
dimensions: [5] # [CRITICAL, POOR, FAIR, GOOD, EXCELLENT]
type: "ordinal"
mapping: "probabilistic"
uncertainty: "heteroscedastic"
action:
dimensions: [4] # [PROTECT, RESTORE, ENHANCE, TRANSFORM]
type: "discrete"
constraints: "nested"
coupling: "cross_scale"
control_parameters:
temporal_horizon: 20
precision_init: 1.0
learning_rate: 0.01
exploration_weight: 0.3
adaptation_rate: 0.05
cross_scale_coupling: 0.4
```
### 2. [[Inference Configuration]]
```yaml
inference:
method: "variational" # or "sampling", "mean_field"
policy_type: "discrete"
variational_parameters:
free_energy_type: "expected"
inference_iterations: 10
convergence_threshold: 1e-6
belief_initialization:
type: "uniform"
prior_strength: 1.0
precision_dynamics:
update_rule: "adaptive"
learning_rate: 0.1
bounds: [0.1, 10.0]
```
### 3. [[Matrix Specifications]]
```yaml
matrices:
observation_model: # A Matrix
type: "hierarchical_probabilistic"
normalization: "hierarchical"
sparsity: "block_structured"
initialization: "informed_ecological"
transition_model: # B Matrix
type: "coupled_markov"
constraints: "mass_energy_conservation"
symmetry: "ecological_networks"
initialization: "ecosystem_based"
preference_model: # C Matrix
type: "multi_objective"
target_states:
ecological: "GOOD"
social: "FAIR"
economic: "SUSTAINABLE"
weights:
ecological: 0.4
social: 0.3
economic: 0.3
prior_beliefs: # D Matrix
type: "hierarchical_distribution"
initialization: "expert_informed"
update_rule: "bayesian_ecological"
```
## Analysis Framework
### 1. [[Performance Metrics]]
```python
@dataclass
class BioregionalMetrics:
"""Comprehensive bioregional performance tracking."""
ecological_metrics: Dict[str, float] = field(default_factory=lambda: {
"biodiversity_index": 0.0,
"ecosystem_health": 0.0,
"habitat_connectivity": 0.0,
"species_persistence": 0.0,
"ecological_resilience": 0.0
})
climate_metrics: Dict[str, float] = field(default_factory=lambda: {
"carbon_sequestration": 0.0,
"water_regulation": 0.0,
"microclimate_stability": 0.0,
"extreme_event_buffer": 0.0
})
social_metrics: Dict[str, float] = field(default_factory=lambda: {
"community_participation": 0.0,
"knowledge_integration": 0.0,
"cultural_preservation": 0.0,
"governance_effectiveness": 0.0
})
economic_metrics: Dict[str, float] = field(default_factory=lambda: {
"sustainable_value": 0.0,
"resource_efficiency": 0.0,
"green_jobs": 0.0,
"ecosystem_services_value": 0.0
})
stewardship_metrics: Dict[str, float] = field(default_factory=lambda: {
"management_effectiveness": 0.0,
"stakeholder_engagement": 0.0,
"adaptive_capacity": 0.0,
"cross_scale_coordination": 0.0
})
```
### 2. [[Visualization Suite]]
```python
class BioregionalVisualization:
"""Comprehensive bioregional visualization tools."""
@staticmethod
def plot_system_state(
bioregional_state: BioregionalState,
time_series: np.ndarray
) -> plt.Figure:
"""Visualize multi-dimensional system state."""
pass
@staticmethod
def plot_intervention_impacts(
before_state: BioregionalState,
after_state: BioregionalState,
intervention_data: Dict[str, Any]
) -> plt.Figure:
"""Visualize intervention outcomes."""
pass
@staticmethod
def plot_cross_scale_dynamics(
states: Dict[str, np.ndarray],
scales: List[str],
interactions: np.ndarray
) -> plt.Figure:
"""Visualize cross-scale ecological dynamics."""
pass
```
## Extension Points
### 1. [[Stewardship Modes]]
```python
class StewardshipMode(ABC):
"""Abstract base class for stewardship modes."""
@abstractmethod
def evaluate_state(self,
current_state: BioregionalState,
target_state: BioregionalState) -> float:
"""Evaluate current state against stewardship goals."""
pass
@abstractmethod
def propose_interventions(self,
state: BioregionalState,
constraints: Dict[str, Any]) -> List[Intervention]:
"""Propose context-appropriate interventions."""
pass
```
### 2. [[Learning Mechanisms]]
```python
class LearningMechanism(ABC):
"""Abstract base class for learning mechanisms."""
@abstractmethod
def update_parameters(self,
experience: Experience,
current_params: ModelParameters) -> ModelParameters:
"""Update model parameters based on experience."""
pass
```
### 3. [[Adaptation Strategies]]
```python
class AdaptationStrategy(ABC):
"""Abstract base class for adaptation strategies."""
@abstractmethod
def adapt_control_parameters(self,
performance: PerformanceMetrics,
current_params: ControlParameters
) -> ControlParameters:
"""Adapt control parameters based on performance."""
pass
```
## Integration Examples
### 1. [[Bioregional Stewardship]]
```python
# Configure bioregional stewardship
config = InferenceConfig(
method=InferenceMethod.HIERARCHICAL_SAMPLING,
policy_type=PolicyType.MIXED,
temporal_horizon=20,
spatial_scales=["local", "landscape", "regional"],
learning_rate=0.01,
precision_init=1.0,
custom_params={
"stewardship_mode": "adaptive_comanagement",
"stakeholder_weights": {
"local_communities": 0.3,
"indigenous_knowledge": 0.3,
"scientific_expertise": 0.2,
"policy_makers": 0.2
},
"intervention_constraints": {
"budget_limit": 1000000,
"time_horizon": "5y",
"social_acceptance": 0.7
}
}
)
# Create bioregional stewardship dispatcher
dispatcher = BioregionalStewardshipFactory.create(config)
```
### 2. [[Advanced Stewardship]]
```python
# Configure advanced stewardship with learning
config = InferenceConfig(
method=InferenceMethod.PARTICIPATORY_SAMPLING,
policy_type=PolicyType.ADAPTIVE,
temporal_horizon=50,
num_samples=5000,
custom_params={
"stewardship_mode": "transformative",
"learning_mechanism": "social_ecological",
"adaptation_strategy": "resilience_based",
"cross_scale_coupling": True,
"stakeholder_network": "distributed"
}
)
# Create dispatcher with social-ecological learning
dispatcher = BioregionalStewardshipFactory.create_with_learning(config)
```
## References
1. [[Bioregional Stewardship Theory]]
2. [[Social-Ecological Systems]]
3. [[Adaptive Comanagement]]
4. [[Resilience Thinking]]
5. [[Traditional Ecological Knowledge]]