Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

155 строки
5.0 KiB
Markdown

---
title: Cognitive Concepts Index
type: index
status: stable
created: 2024-02-07
tags:
- concepts
- cognitive
- index
semantic_relations:
- type: organizes
links:
- [[cognitive_theory]]
- [[implementation_concepts]]
---
# Cognitive Concepts Index
## Theoretical Foundations
### Active Inference
- [[concepts/active_inference/theory|Active Inference Theory]]
- [[concepts/active_inference/free_energy|Free Energy Principle]]
- [[concepts/active_inference/variational|Variational Inference]]
- [[concepts/active_inference/belief_updating|Belief Updating]]
- [[concepts/active_inference/policy_selection|Policy Selection]]
### Predictive Processing
- [[concepts/predictive/hierarchical|Hierarchical Processing]]
- [[concepts/predictive/precision|Precision Weighting]]
- [[concepts/predictive/prediction_error|Prediction Error]]
- [[concepts/predictive/generative_models|Generative Models]]
### Information Theory
- [[concepts/information/entropy|Entropy]]
- [[concepts/information/kl_divergence|KL Divergence]]
- [[concepts/information/mutual_information|Mutual Information]]
- [[concepts/information/information_geometry|Information Geometry]]
## Implementation Concepts
### Agent Architecture
- [[concepts/architecture/belief_states|Belief States]]
- [[concepts/architecture/policy_space|Policy Space]]
- [[concepts/architecture/observation_model|Observation Model]]
- [[concepts/architecture/transition_model|Transition Model]]
### Learning Mechanisms
- [[concepts/learning/parameter_learning|Parameter Learning]]
- [[concepts/learning/structure_learning|Structure Learning]]
- [[concepts/learning/meta_learning|Meta-Learning]]
- [[concepts/learning/active_learning|Active Learning]]
### System Integration
- [[concepts/integration/perception|Perception Integration]]
- [[concepts/integration/action|Action Integration]]
- [[concepts/integration/memory|Memory Integration]]
- [[concepts/integration/attention|Attention Integration]]
## Advanced Concepts
### Hierarchical Processing
- [[concepts/hierarchical/temporal|Temporal Hierarchies]]
- [[concepts/hierarchical/spatial|Spatial Hierarchies]]
- [[concepts/hierarchical/conceptual|Conceptual Hierarchies]]
- [[concepts/hierarchical/abstraction|Abstraction Levels]]
### Multi-Agent Systems
- [[concepts/multi_agent/coordination|Agent Coordination]]
- [[concepts/multi_agent/communication|Agent Communication]]
- [[concepts/multi_agent/collective|Collective Behavior]]
- [[concepts/multi_agent/emergence|Emergent Behavior]]
### Complex Systems
- [[concepts/complex/self_organization|Self-Organization]]
- [[concepts/complex/emergence|Emergence]]
- [[concepts/complex/adaptation|Adaptation]]
- [[concepts/complex/criticality|Criticality]]
## Mathematical Foundations
### Probability Theory
- [[concepts/probability/bayesian|Bayesian Inference]]
- [[concepts/probability/distributions|Probability Distributions]]
- [[concepts/probability/graphical_models|Graphical Models]]
- [[concepts/probability/sampling|Sampling Methods]]
### Optimization
- [[concepts/optimization/variational|Variational Methods]]
- [[concepts/optimization/gradient|Gradient Methods]]
- [[concepts/optimization/stochastic|Stochastic Methods]]
- [[concepts/optimization/constrained|Constrained Optimization]]
### Dynamical Systems
- [[concepts/dynamics/continuous|Continuous Dynamics]]
- [[concepts/dynamics/discrete|Discrete Dynamics]]
- [[concepts/dynamics/stochastic|Stochastic Dynamics]]
- [[concepts/dynamics/chaos|Chaos Theory]]
## Implementation Examples
### Basic Examples
```python
# Basic active inference agent
class ActiveInferenceAgent:
def __init__(self):
self.beliefs = initialize_beliefs()
self.model = create_generative_model()
def update(self, observation):
# Update beliefs using variational inference
self.beliefs = update_beliefs(self.beliefs, observation)
# Select action using expected free energy
action = select_action(self.beliefs)
return action
```
### Advanced Examples
```python
# Hierarchical active inference
class HierarchicalAgent:
def __init__(self, levels):
self.levels = [
ActiveInferenceAgent()
for _ in range(levels)
]
def update(self, observation):
# Bottom-up message passing
for level in self.levels:
prediction = level.predict()
observation = level.update(observation)
# Top-down action selection
action = self.levels[-1].select_action()
return action
```
## Related Resources
### Documentation
- [[docs/guides/concept_guides|Concept Guides]]
- [[docs/api/concept_api|Concept API]]
- [[docs/examples/concept_examples|Concept Examples]]
### Knowledge Base
- [[knowledge_base/cognitive/concepts|Cognitive Concepts]]
- [[knowledge_base/mathematics/concepts|Mathematical Concepts]]
- [[knowledge_base/systems/concepts|Systems Concepts]]
### Learning Resources
- [[learning_paths/concepts|Concept Learning Path]]
- [[tutorials/concepts|Concept Tutorials]]
- [[guides/concepts/best_practices|Concept Best Practices]]