cognitive/docs/concepts/key_concepts.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

175 строки
3.4 KiB
Markdown

# Key Concepts
## Overview
This guide explains the core concepts of our cognitive modeling framework, integrating Active Inference with knowledge management.
## Knowledge Structure
### Nodes
Fundamental units of knowledge representation:
#### Agent Nodes
- [[agent_template|Agent Template]]
- Represent cognitive agents
- Contain beliefs, goals, and actions
- See [[agent_concepts]]
#### Belief Nodes
- [[belief_template|Belief Template]]
- Represent probabilistic beliefs
- Update through observations
- See [[belief_concepts]]
#### Goal Nodes
- [[goal_template|Goal Template]]
- Define agent objectives
- Guide policy selection
- See [[goal_concepts]]
### Relationships
- Bidirectional links between nodes
- Represent dependencies and influences
- Follow [[linking_patterns]]
## Active Inference Framework
### Core Principles
1. Free Energy Minimization
- Drives agent behavior
- Balances exploration/exploitation
- See [[free_energy_principle]]
2. Belief Updating
- Bayesian inference
- Precision-weighted updates
- See [[belief_updating]]
3. Policy Selection
- Expected free energy
- Action-perception cycles
- See [[policy_selection]]
### Implementation
- [[active_inference_intro]]
- [[model_architecture]]
- [[implementation_guide]]
## Tool Integration
### Development Environment
- [[cursor_integration]]
- AI-augmented development
- Code generation
- Documentation assistance
### Knowledge Management
- [[obsidian_usage]]
- Network visualization
- Bidirectional linking
- Template system
### Version Control
- [[git_workflow]]
- Code management
- Knowledge base versioning
- Collaboration
## Modeling Paradigms
### Knowledge Representation
1. Template-Based
- Structured templates
- Consistent metadata
- See [[template_guide]]
2. Network-Centric
- Graph structure
- Relationship mapping
- See [[network_analysis]]
3. Version-Controlled
- Change tracking
- Collaboration
- See [[version_control]]
### Cognitive Architecture
#### Belief Systems
- Probabilistic representations
- Prior knowledge
- Learning mechanisms
- See [[belief_systems]]
#### Goal Hierarchies
- Objective structures
- Priority management
- Temporal horizons
- See [[goal_hierarchies]]
#### Action Selection
- Policy inference
- Expected free energy
- Decision making
- See [[action_selection]]
## Development Workflow
### Code Development
1. Use [[cursor_integration]]
2. Follow [[code_style]]
3. Update [[documentation_guide]]
### Knowledge Management
1. Use [[obsidian_usage]]
2. Maintain [[linking_patterns]]
3. Follow [[maintenance_guide]]
### Version Control
1. Follow [[git_workflow]]
2. Use [[branching_strategy]]
3. Review [[deployment_guide]]
## Best Practices
### Code Organization
- Modular structure
- Clear dependencies
- See [[code_organization]]
### Documentation
- Comprehensive guides
- Clear examples
- See [[documentation_guide]]
### Testing
- Unit tests
- Integration tests
- See [[testing_guide]]
## Advanced Topics
### Network Analysis
- Graph metrics
- Relationship patterns
- See [[network_analysis]]
### Model Optimization
- Parameter tuning
- Performance analysis
- See [[optimization_guide]]
### Scaling
- Distributed systems
- Performance optimization
- See [[scaling_guide]]
## Related Concepts
- [[active_inference_theory]]
- [[cognitive_architectures]]
- [[knowledge_graphs]]
- [[probabilistic_modeling]]
## References
- [[research_papers]]
- [[implementation_examples]]
- [[further_reading]]