cognitive/docs/concepts/machine_readability.md
Daniel Ari Friedman 6caa1a7cb1 Update
2025-02-07 08:16:25 -08:00

4.9 KiB

Machine Readability and Automation


title: Machine Readability and Automation type: concept status: stable created: 2024-02-06 tags:


Overview

Machine readability is a core benefit of plain text formats, enabling automated processing, validation, and intelligence augmentation. This document explores how our plain text ecosystem facilitates automation and machine learning integration.

Text Processing Benefits

1. Structured Data Extraction

# Example of extracting model parameters
def extract_parameters(markdown_file):
    """Extract model parameters from markdown documentation.
    See [[parameter_extraction]] for details."""
    parameters = {}
    # Parse YAML frontmatter
    # Extract code blocks
    # Parse parameter definitions
    return parameters

2. Knowledge Graph Construction

3. Semantic Analysis

Automation Capabilities

1. Documentation Processing

# Automated documentation validation
def validate_docs():
    """
    Validates documentation structure and links.
    See [[documentation_validation]] for rules.
    """
    check_broken_links()
    validate_frontmatter()
    check_code_examples()

2. Code Generation

3. Quality Checks

Machine Learning Integration

1. Training Data Preparation

# Convert documentation to training data
def prepare_training_data():
    """
    Extracts training examples from documentation.
    See [[training_data_preparation]].
    """
    examples = []
    # Parse markdown files
    # Extract code examples
    # Generate labels
    return examples

2. Model Training

3. Automated Improvement

Tooling Integration

1. CI/CD Pipeline

# Example GitHub Actions workflow
name: Documentation CI
on: [push]
jobs:
  validate:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Check Links
        run: python tools/validate_links.py
      - name: Generate Docs
        run: python tools/generate_docs.py

2. Development Tools

3. Analysis Tools

Knowledge Extraction

1. Concept Mining

# Extract concepts from documentation
def mine_concepts():
    """
    Identifies key concepts and relationships.
    See [[concept_mining]].
    """
    concepts = {}
    # Parse documentation
    # Extract concepts
    # Build relationships
    return concepts

2. Pattern Recognition

3. Knowledge Base Construction

Automation Examples

1. Documentation Generation

# Generate API documentation
def generate_api_docs():
    """
    Generates API documentation from source code.
    See [[api_documentation]].
    """
    parse_source_code()
    extract_docstrings()
    generate_markdown()

2. Validation Workflows

graph TD
    A[Parse Files] --> B[Extract Content]
    B --> C[Validate Structure]
    C --> D[Check Links]
    D --> E[Generate Report]

3. Learning Systems

graph LR
    A[Documentation] --> B[Training Data]
    B --> C[Model Training]
    C --> D[Automated Tools]
    D --> E[Improved Docs]

Best Practices

1. Structure Guidelines

2. Automation Rules

3. Integration Patterns

References