зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
4.9 KiB
4.9 KiB
Machine Readability and Automation
title: Machine Readability and Automation type: concept status: stable created: 2024-02-06 tags:
- automation
- machine-learning
- tooling related:
- plain_text_benefits
- automation_tools
- ci_cd_pipeline
Overview
Machine readability is a core benefit of plain text formats, enabling automated processing, validation, and intelligence augmentation. This document explores how our plain text ecosystem facilitates automation and machine learning integration.
Text Processing Benefits
1. Structured Data Extraction
# Example of extracting model parameters
def extract_parameters(markdown_file):
"""Extract model parameters from markdown documentation.
See [[parameter_extraction]] for details."""
parameters = {}
# Parse YAML frontmatter
# Extract code blocks
# Parse parameter definitions
return parameters
2. Knowledge Graph Construction
- Automated Link Analysis
3. Semantic Analysis
- Natural Language Processing
Automation Capabilities
1. Documentation Processing
# Automated documentation validation
def validate_docs():
"""
Validates documentation structure and links.
See [[documentation_validation]] for rules.
"""
check_broken_links()
validate_frontmatter()
check_code_examples()
2. Code Generation
- Template-Based Generation
3. Quality Checks
- Automated Validation
Machine Learning Integration
1. Training Data Preparation
# Convert documentation to training data
def prepare_training_data():
"""
Extracts training examples from documentation.
See [[training_data_preparation]].
"""
examples = []
# Parse markdown files
# Extract code examples
# Generate labels
return examples
2. Model Training
- Documentation-Based Training
3. Automated Improvement
- Continuous Learning
Tooling Integration
1. CI/CD Pipeline
# Example GitHub Actions workflow
name: Documentation CI
on: [push]
jobs:
validate:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Check Links
run: python tools/validate_links.py
- name: Generate Docs
run: python tools/generate_docs.py
2. Development Tools
- Editor Integration
3. Analysis Tools
- Automated Analysis
Knowledge Extraction
1. Concept Mining
# Extract concepts from documentation
def mine_concepts():
"""
Identifies key concepts and relationships.
See [[concept_mining]].
"""
concepts = {}
# Parse documentation
# Extract concepts
# Build relationships
return concepts
2. Pattern Recognition
- Automated Pattern Detection
3. Knowledge Base Construction
- Automated Organization
Automation Examples
1. Documentation Generation
# Generate API documentation
def generate_api_docs():
"""
Generates API documentation from source code.
See [[api_documentation]].
"""
parse_source_code()
extract_docstrings()
generate_markdown()
2. Validation Workflows
graph TD
A[Parse Files] --> B[Extract Content]
B --> C[Validate Structure]
C --> D[Check Links]
D --> E[Generate Report]
3. Learning Systems
graph LR
A[Documentation] --> B[Training Data]
B --> C[Model Training]
C --> D[Automated Tools]
D --> E[Improved Docs]
Best Practices
1. Structure Guidelines
- Machine-Friendly Format
2. Automation Rules
- Tool Configuration
3. Integration Patterns
- Tool Integration