зеркало из
https://github.com/docxology/cognitive.git
synced 2025-10-29 12:16:04 +02:00
24 KiB
24 KiB
Content Management Guide
title: Content Management Guide type: guide status: stable created: 2024-02-06 tags:
- content
- management
- maintenance
- organization semantic_relations:
- type: implements links: documentation_standards
- type: relates links:
Overview
This guide establishes comprehensive content management practices for maintaining, updating, and evolving documentation in our cognitive modeling framework.
Content Lifecycle
1. Content Creation
# @content_creation
content_workflow = {
"planning": {
"needs_analysis": ["[[documentation_standards]]", "[[knowledge_organization]]"],
"structure_design": ["[[ai_documentation_style]]", "[[linking_patterns]]"],
"template_selection": ["[[ai_concept_template]]", "[[package_component]]"]
},
"development": {
"content_writing": ["[[documentation_guide]]", "[[example_writing]]"],
"review_process": ["[[validation_framework]]", "[[quality_metrics]]"],
"integration": ["[[linking_completeness]]", "[[knowledge_organization]]"]
},
"publication": {
"validation": ["[[validation_tools]]", "[[quality_metrics]]"],
"deployment": ["[[git_workflow]]", "[[version_control]]"],
"announcement": ["[[changelog]]", "[[release_management]]"]
}
}
2. Content Maintenance
# @maintenance_workflow
maintenance_process = {
"regular_review": {
"schedule": "Monthly",
"tasks": [
"Content accuracy check",
"Link validation",
"Quality assessment"
],
"tools": ["[[validation_tools]]", "[[analysis_tools]]"]
},
"updates": {
"schedule": "As needed",
"triggers": [
"New features",
"Bug fixes",
"User feedback"
],
"process": ["[[version_control]]", "[[changelog]]"]
},
"archival": {
"schedule": "Yearly",
"tasks": [
"Obsolete content review",
"Version archiving",
"Migration planning"
],
"tools": ["[[archival_tools]]", "[[migration_guide]]"]
}
}
Content Organization
1. Repository Structure
See ai_folder_structure for detailed organization.
# @repository_structure
content_structure = {
"active_content": {
"location": "docs/",
"organization": "[[knowledge_organization]]",
"management": "[[version_control]]"
},
"archived_content": {
"location": "archive/",
"organization": "[[archival_structure]]",
"management": "[[archival_policy]]"
},
"temporary_content": {
"location": "drafts/",
"organization": "[[draft_management]]",
"management": "[[review_process]]"
}
}
2. Version Management
See version_control for implementation details.
# @version_management
version_strategy = {
"branching": {
"main": "Stable documentation",
"develop": "Work in progress",
"feature": "New content development",
"release": "Version preparation"
},
"tagging": {
"pattern": "v{major}.{minor}.{patch}",
"rules": "[[versioning_standards]]",
"process": "[[release_management]]"
}
}
Content Processing
1. Content Pipeline
# @content_pipeline
class ContentPipeline:
"""
Content processing pipeline.
See [[ai_semantic_processing]] for details.
"""
def __init__(self):
self.validator = ContentValidator()
self.processor = ContentProcessor()
self.indexer = ContentIndexer()
self.graph = KnowledgeGraph()
def process_content(self, content: Content) -> ProcessedContent:
"""
Process content through pipeline.
See [[validation_framework]] for rules.
"""
# Pre-processing
self._preprocess_content(content)
# Validation
validation_result = self.validator.validate(content)
if not validation_result.is_valid:
self._handle_validation_errors(validation_result.errors)
# Semantic Processing
processed_content = self.processor.process(content)
self._extract_semantic_relations(processed_content)
# Knowledge Graph Integration
self.graph.integrate_content(processed_content)
# Indexing
self.indexer.index(processed_content)
# Post-processing
self._update_related_content(processed_content)
self._verify_integration(processed_content)
return processed_content
def _preprocess_content(self, content: Content):
"""
Prepare content for processing.
See [[ai_documentation_style]] for formatting rules.
"""
# Format validation
self._validate_format(content)
# Link extraction
self._extract_links(content)
# Metadata validation
self._validate_metadata(content)
def _extract_semantic_relations(self, content: ProcessedContent):
"""
Extract and validate semantic relationships.
See [[linking_patterns]] for relationship types.
"""
# Extract relationships
relationships = self._parse_relationships(content)
# Validate against known patterns
self._validate_relationships(relationships)
# Update knowledge graph
self._update_graph_relationships(relationships)
def _update_related_content(self, content: ProcessedContent):
"""
Update related content based on changes.
See [[linking_completeness]] for bidirectional linking.
"""
# Find affected documents
affected_docs = self._find_affected_documents(content)
# Update bidirectional links
self._update_bidirectional_links(affected_docs)
# Validate consistency
self._validate_consistency(affected_docs)
2. Quality Control Implementation
# @quality_control
class QualityControl:
"""
Content quality control system.
See [[quality_metrics]] for criteria.
"""
def __init__(self):
self.metrics = QualityMetrics()
self.checker = StyleChecker()
self.validator = LinkValidator()
self.analyzer = ContentAnalyzer()
def check_quality(self, content: Content) -> QualityReport:
"""
Check content quality.
See [[validation_framework]] for rules.
"""
# Style Analysis
style_report = self._analyze_style(content)
# Link Validation
link_report = self._validate_links(content)
# Content Analysis
content_report = self._analyze_content(content)
# Integration Check
integration_report = self._check_integration(content)
# Generate Quality Report
return self._generate_report(
style_report,
link_report,
content_report,
integration_report
)
def _analyze_style(self, content: Content) -> StyleReport:
"""
Analyze content style.
See [[ai_documentation_style]] for style rules.
"""
return self.checker.check_style(content, {
"formatting": self._check_formatting(content),
"structure": self._check_structure(content),
"consistency": self._check_consistency(content)
})
def _validate_links(self, content: Content) -> LinkReport:
"""
Validate content links.
See [[linking_validation]] for validation rules.
"""
return self.validator.validate_links(content, {
"existence": self._check_link_existence(content),
"bidirectional": self._check_bidirectional_links(content),
"semantic": self._check_semantic_validity(content)
})
def _analyze_content(self, content: Content) -> ContentReport:
"""
Analyze content quality.
See [[quality_metrics]] for quality criteria.
"""
return self.analyzer.analyze_content(content, {
"completeness": self._check_completeness(content),
"accuracy": self._check_accuracy(content),
"relevance": self._check_relevance(content)
})
Implementation Integration
1. Knowledge Graph Integration
# @graph_integration
class KnowledgeGraphIntegrator:
"""
Integrates content with knowledge graph.
See [[knowledge_organization]] for structure.
"""
def __init__(self):
self.graph = KnowledgeGraph()
self.validator = GraphValidator()
self.indexer = GraphIndexer()
def integrate_content(self, content: ProcessedContent):
"""
Integrate content into knowledge graph.
See [[linking_completeness]] for integration rules.
"""
# Extract graph elements
nodes = self._extract_nodes(content)
edges = self._extract_edges(content)
# Validate graph elements
self._validate_graph_elements(nodes, edges)
# Update graph
self._update_graph(nodes, edges)
# Verify integration
self._verify_integration(content)
def _extract_nodes(self, content: ProcessedContent) -> List[Node]:
"""Extract graph nodes from content."""
return [
self._create_node(concept)
for concept in content.concepts
]
def _extract_edges(self, content: ProcessedContent) -> List[Edge]:
"""Extract graph edges from content."""
return [
self._create_edge(relation)
for relation in content.relations
]
2. Version Control Integration
# @version_control
class VersionController:
"""
Manages content versioning.
See [[version_control]] for versioning rules.
"""
def __init__(self):
self.repo = Repository()
self.validator = VersionValidator()
self.migrator = ContentMigrator()
def manage_version(self, content: Content, version: Version):
"""
Manage content version.
See [[versioning_standards]] for version rules.
"""
# Validate version
self._validate_version(version)
# Create version branch
branch = self._create_version_branch(version)
# Update content
self._update_content(content, version)
# Validate changes
self._validate_changes(content)
# Merge changes
self._merge_changes(branch)
def _create_version_branch(self, version: Version) -> Branch:
"""Create version control branch."""
return self.repo.create_branch(
name=f"version/{version}",
base="develop"
)
Review Process
1. Review Workflow
graph TD
A[Content Creation] --> B[Initial Review]
B --> C[Technical Review]
C --> D[Quality Check]
D --> E[Final Approval]
E --> F[Publication]
2. Review Criteria
# @review_criteria
review_requirements = {
"technical_accuracy": {
"concept_correctness": True,
"implementation_accuracy": True,
"code_validity": True
},
"documentation_quality": {
"clarity": 0.9, # 90% clarity score
"completeness": 0.95, # 95% completeness
"consistency": 1.0 # 100% consistency
},
"integration": {
"link_validity": 1.0, # All links valid
"cross_references": True, # Cross-refs present
"knowledge_graph": True # Graph integration
}
}
Maintenance Procedures
1. Regular Updates
# @update_procedures
update_workflow = {
"scheduled_review": {
"frequency": "Monthly",
"tasks": [
"Content review",
"Link validation",
"Quality assessment"
]
},
"content_updates": {
"triggers": [
"New features",
"Bug fixes",
"User feedback"
],
"process": "[[update_process]]"
},
"version_control": {
"branching": "[[git_workflow]]",
"releases": "[[release_management]]",
"changelog": "[[changelog]]"
}
}
2. Content Migration
# @migration_procedures
migration_workflow = {
"planning": {
"impact_analysis": True,
"timeline_planning": True,
"communication_plan": True
},
"execution": {
"content_update": True,
"link_updates": True,
"validation": True
},
"verification": {
"quality_check": True,
"integration_test": True,
"user_acceptance": True
}
}
Archival Strategy
1. Content Archival
# @archival_strategy
archival_rules = {
"criteria": {
"age": "> 2 years",
"relevance": "Low",
"usage": "< 10 views/month"
},
"process": {
"review": "Manual review",
"approval": "Team lead",
"archival": "Automated"
},
"storage": {
"location": "archive/",
"format": "Markdown + metadata",
"indexing": "Required"
}
}
2. Version Archives
# @version_archives
archive_management = {
"major_versions": {
"retention": "Permanent",
"format": "Full snapshot",
"accessibility": "Public"
},
"minor_versions": {
"retention": "2 years",
"format": "Differential",
"accessibility": "Internal"
},
"patches": {
"retention": "6 months",
"format": "Changelog only",
"accessibility": "Internal"
}
}
Best Practices
1. Content Creation
- Follow documentation_standards
- Use ai_documentation_style
- Implement linking_patterns
- Validate with quality_metrics
2. Content Maintenance
- Regular reviews
- Proactive updates
- Link validation
- Quality monitoring
3. Version Control
- Follow git_workflow
- Maintain changelog
- Use version_tags
- Document migrations
Related Documentation
References
Implementation Examples
1. Content Analysis Example
# @content_analysis
class ContentAnalyzer:
"""
Detailed content analysis implementation.
See [[quality_metrics]] for analysis criteria.
"""
def analyze_document(self, doc: Document) -> AnalysisResult:
"""
Perform comprehensive document analysis.
Example:
>>> analyzer = ContentAnalyzer()
>>> result = analyzer.analyze_document(doc)
>>> print(f"Quality Score: {result.quality_score}")
Quality Score: 0.95
"""
# Structure Analysis
structure_score = self._analyze_structure(doc)
print(f"Structure Analysis: {structure_score:.2f}")
# Content Quality
quality_score = self._analyze_quality(doc)
print(f"Quality Analysis: {quality_score:.2f}")
# Link Analysis
link_score = self._analyze_links(doc)
print(f"Link Analysis: {link_score:.2f}")
return AnalysisResult(
structure=structure_score,
quality=quality_score,
links=link_score,
overall=np.mean([structure_score, quality_score, link_score])
)
def _analyze_structure(self, doc: Document) -> float:
"""
Analyze document structure.
Example structure check:
```markdown
# Title
## Overview
Content...
## Implementation
Code...
```
"""
required_sections = {
"overview": r"^## Overview",
"implementation": r"^## Implementation",
"examples": r"^## Examples",
"references": r"^## References"
}
scores = []
for section, pattern in required_sections.items():
if re.search(pattern, doc.content, re.MULTILINE):
scores.append(1.0)
else:
print(f"Missing section: {section}")
scores.append(0.0)
return np.mean(scores)
def _analyze_quality(self, doc: Document) -> float:
"""
Analyze content quality.
Example quality metrics:
- Completeness: All sections have content
- Clarity: Clear explanations and examples
- Consistency: Consistent terminology
"""
metrics = {
"completeness": self._check_completeness(doc),
"clarity": self._check_clarity(doc),
"consistency": self._check_consistency(doc)
}
for metric, score in metrics.items():
print(f"{metric.title()}: {score:.2f}")
return np.mean(list(metrics.values()))
def _analyze_links(self, doc: Document) -> float:
"""
Analyze document links.
Example link analysis:
- [[concept]] -> Valid concept link
- [[implementation]] -> Valid implementation link
- [[missing_doc]] -> Invalid link
"""
links = re.findall(r"\[\[(.*?)\]\]", doc.content)
valid_links = 0
for link in links:
if self._validate_link(link):
valid_links += 1
else:
print(f"Invalid link: {link}")
return valid_links / len(links) if links else 1.0
2. Content Processing Example
# @content_processor
class ContentProcessor:
"""
Detailed content processing implementation.
See [[ai_semantic_processing]] for processing rules.
"""
def process_document(self, doc: Document) -> ProcessedDocument:
"""
Process document with detailed steps.
Example:
>>> processor = ContentProcessor()
>>> processed = processor.process_document(doc)
>>> print(f"Processed sections: {len(processed.sections)}")
Processed sections: 5
"""
# Extract metadata
metadata = self._extract_metadata(doc)
print(f"Extracted metadata: {metadata.keys()}")
# Parse sections
sections = self._parse_sections(doc)
print(f"Found sections: {[s.title for s in sections]}")
# Process content
processed_sections = []
for section in sections:
processed = self._process_section(section)
processed_sections.append(processed)
print(f"Processed section: {section.title}")
# Extract and validate links
links = self._extract_links(doc)
valid_links = self._validate_links(links)
print(f"Valid links: {len(valid_links)}/{len(links)}")
return ProcessedDocument(
metadata=metadata,
sections=processed_sections,
links=valid_links
)
def _extract_metadata(self, doc: Document) -> dict:
"""
Extract document metadata.
Example metadata:
```yaml
---
title: Document Title
type: guide
status: stable
created: 2024-02-06
tags: [tag1, tag2]
---
```
"""
try:
metadata_match = re.match(
r"---\n(.*?)\n---",
doc.content,
re.DOTALL
)
if metadata_match:
return yaml.safe_load(metadata_match.group(1))
return {}
except Exception as e:
print(f"Metadata extraction error: {e}")
return {}
def _parse_sections(self, doc: Document) -> List[Section]:
"""
Parse document sections.
Example section structure:
```markdown
## Section Title
Section content...
### Subsection
Subsection content...
```
"""
sections = []
current_section = None
for line in doc.content.split("\n"):
if line.startswith("## "):
if current_section:
sections.append(current_section)
current_section = Section(
title=line[3:].strip(),
content=[],
level=2
)
elif line.startswith("### "):
if current_section:
current_section.subsections.append(
Section(
title=line[4:].strip(),
content=[],
level=3
)
)
elif current_section:
current_section.content.append(line)
if current_section:
sections.append(current_section)
return sections
def _process_section(self, section: Section) -> ProcessedSection:
"""
Process individual section.
Example processing:
1. Format content
2. Extract code blocks
3. Process links
4. Validate structure
"""
# Process content
formatted_content = self._format_content(section.content)
# Extract code blocks
code_blocks = self._extract_code_blocks(formatted_content)
# Process links
links = self._extract_section_links(formatted_content)
# Create processed section
return ProcessedSection(
title=section.title,
content=formatted_content,
code_blocks=code_blocks,
links=links,
level=section.level
)
3. Content Validation Example
# @content_validator
class ContentValidator:
"""
Detailed content validation implementation.
See [[validation_framework]] for validation rules.
"""
def validate_document(self, doc: Document) -> ValidationResult:
"""
Validate document with detailed checks.
Example:
>>> validator = ContentValidator()
>>> result = validator.validate_document(doc)
>>> print(f"Validation passed: {result.is_valid}")
Validation passed: True
"""
# Structure validation
structure_result = self._validate_structure(doc)
print(f"Structure validation: {structure_result.status}")
# Content validation
content_result = self._validate_content(doc)
print(f"Content validation: {content_result.status}")
# Link validation
link_result = self._validate_links(doc)
print(f"Link validation: {link_result.status}")
# Metadata validation
metadata_result = self._validate_metadata(doc)
print(f"Metadata validation: {metadata_result.status}")
# Combine results
is_valid = all([
structure_result.is_valid,
content_result.is_valid,
link_result.is_valid,
metadata_result.is_valid
])
return ValidationResult(
is_valid=is_valid,
structure=structure_result,
content=content_result,
links=link_result,
metadata=metadata_result
)
def _validate_structure(self, doc: Document) -> ValidationResult:
"""
Validate document structure.
Example structure requirements:
1. Has required sections
2. Proper heading hierarchy
3. Consistent formatting
"""
issues = []
# Check required sections
missing_sections = self._check_required_sections(doc)
if missing_sections:
issues.append(f"Missing sections: {missing_sections}")
# Check heading hierarchy
hierarchy_issues = self._check_heading_hierarchy(doc)
if hierarchy_issues:
issues.extend(hierarchy_issues)
# Check formatting
formatting_issues = self._check_formatting(doc)
if formatting_issues:
issues.extend(formatting_issues)
return ValidationResult(
is_valid=len(issues) == 0,
issues=issues
)