cognitive/docs/guides/implementation/active_inference_agent.md
Daniel Ari Friedman a61f13a26f Updates
2025-02-07 11:08:25 -08:00

362 строки
9.2 KiB
Markdown

---
title: Implementing Active Inference Agents
type: guide
status: stable
created: 2024-02-07
tags:
- active_inference
- implementation
- guide
semantic_relations:
- type: implements
links: [[knowledge_base/cognitive/active_inference]]
- type: relates
links:
- [[knowledge_base/mathematics/free_energy_theory]]
- [[knowledge_base/agents/GenericPOMDP/README]]
---
# Implementing Active Inference Agents
## Overview
This guide provides a comprehensive approach to implementing active inference agents, from basic principles to advanced features. We'll cover the theoretical foundations, mathematical implementations, and practical considerations.
## Core Components
### 1. Generative Model
```python
class GenerativeModel:
"""
Generative model for active inference agent.
Implements:
- State transition model P(s_t | s_t-1, a_t)
- Observation model P(o_t | s_t)
- Prior preferences P(s_t)
"""
def __init__(self, config):
self.state_dim = config.state_dim
self.obs_dim = config.obs_dim
self.action_dim = config.action_dim
# Initialize model parameters
self.transition_matrix = initialize_transitions()
self.observation_matrix = initialize_observations()
self.preferences = initialize_preferences()
def state_transition(self, state, action):
"""Compute state transition probability."""
return compute_transition_prob(
state, action, self.transition_matrix
)
def observation_likelihood(self, state):
"""Compute observation likelihood."""
return compute_observation_prob(
state, self.observation_matrix
)
def prior_preference(self, state):
"""Compute prior preference."""
return compute_preference(state, self.preferences)
```
### 2. Variational Inference
```python
class VariationalInference:
"""
Implements variational inference for belief updating.
"""
def __init__(self, model):
self.model = model
self.learning_rate = 0.1
def update_beliefs(self, beliefs, observation):
"""Update beliefs using variational inference."""
# Compute free energy gradients
gradients = compute_free_energy_gradients(
beliefs, observation, self.model
)
# Update beliefs using gradient descent
updated_beliefs = beliefs - self.learning_rate * gradients
# Normalize beliefs
return normalize_distribution(updated_beliefs)
```
### 3. Policy Selection
```python
class PolicySelection:
"""
Policy selection using expected free energy.
"""
def __init__(self, model):
self.model = model
self.temperature = 1.0
def evaluate_policies(self, beliefs, policies):
"""Evaluate policies using expected free energy."""
G = np.zeros(len(policies))
for i, policy in enumerate(policies):
# Compute expected free energy components
pragmatic_value = compute_pragmatic_value(
beliefs, policy, self.model
)
epistemic_value = compute_epistemic_value(
beliefs, policy, self.model
)
G[i] = pragmatic_value + epistemic_value
return G
def select_action(self, beliefs):
"""Select action using softmax policy selection."""
policies = generate_policies()
G = self.evaluate_policies(beliefs, policies)
# Softmax policy selection
probabilities = softmax(G / self.temperature)
return sample_action(probabilities, policies)
```
## Implementation Steps
### 1. Basic Setup
```python
def setup_active_inference_agent(config):
"""Setup basic active inference agent."""
# Create generative model
model = GenerativeModel(config)
# Setup inference
inference = VariationalInference(model)
# Setup policy selection
policy = PolicySelection(model)
return ActiveInferenceAgent(model, inference, policy)
```
### 2. Main Agent Class
```python
class ActiveInferenceAgent:
"""
Complete active inference agent implementation.
"""
def __init__(self, model, inference, policy):
self.model = model
self.inference = inference
self.policy = policy
# Initialize beliefs
self.beliefs = initialize_beliefs(model.state_dim)
def step(self, observation):
"""Single step of perception-action cycle."""
# 1. Update beliefs
self.beliefs = self.inference.update_beliefs(
self.beliefs, observation
)
# 2. Select action
action = self.policy.select_action(self.beliefs)
# 3. Execute action
return action
```
## Advanced Features
### 1. Hierarchical Processing
```python
class HierarchicalAgent:
"""
Hierarchical active inference implementation.
"""
def __init__(self, level_configs):
self.levels = [
ActiveInferenceAgent(config)
for config in level_configs
]
def update(self, observation):
"""Update all levels."""
for level in self.levels:
prediction = level.step(observation)
observation = prediction # Pass prediction as observation
```
### 2. Memory Integration
```python
class MemoryAugmentedAgent:
"""
Agent with memory integration.
"""
def __init__(self, config):
super().__init__(config)
self.memory = EpisodicMemory(config.memory_size)
def step(self, observation):
# Integrate memory into belief updating
memory_state = self.memory.retrieve(self.beliefs)
augmented_beliefs = integrate_memory(
self.beliefs, memory_state
)
# Standard active inference step
action = super().step(observation)
# Update memory
self.memory.store(self.beliefs, action, observation)
return action
```
## Configuration Examples
### Basic Configuration
```yaml
agent_config:
state_dim: 10
obs_dim: 5
action_dim: 3
learning:
learning_rate: 0.1
temperature: 1.0
model:
hidden_dims: [64, 32]
activation: "relu"
```
### Hierarchical Configuration
```yaml
hierarchical_config:
levels:
- state_dim: 20
temporal_scale: 1
- state_dim: 10
temporal_scale: 5
- state_dim: 5
temporal_scale: 10
```
## Testing and Validation
### 1. Unit Tests
```python
def test_belief_updating():
"""Test belief updating mechanism."""
agent = setup_test_agent()
initial_beliefs = agent.beliefs.copy()
observation = generate_test_observation()
agent.step(observation)
assert np.all(agent.beliefs != initial_beliefs)
assert is_normalized(agent.beliefs)
```
### 2. Integration Tests
```python
def test_complete_cycle():
"""Test complete perception-action cycle."""
agent = setup_test_agent()
environment = setup_test_environment()
observation = environment.reset()
for _ in range(100):
action = agent.step(observation)
observation, reward, done, _ = environment.step(action)
assert is_valid_action(action)
if done:
break
```
## Performance Optimization
### 1. Efficient Computation
```python
@numba.jit(nopython=True)
def compute_free_energy_gradients(beliefs, observation, model):
"""Optimized gradient computation."""
# Efficient implementation
pass
```
### 2. Parallel Processing
```python
class ParallelPolicyEvaluation:
"""Parallel policy evaluation."""
def evaluate_policies(self, beliefs, policies):
with concurrent.futures.ProcessPoolExecutor() as executor:
G = list(executor.map(
self._evaluate_single_policy,
[(beliefs, p) for p in policies]
))
return np.array(G)
```
## Common Issues and Solutions
### 1. Numerical Stability
```python
def stable_softmax(x):
"""Numerically stable softmax implementation."""
x = x - np.max(x) # Subtract maximum for stability
exp_x = np.exp(x)
return exp_x / np.sum(exp_x)
```
### 2. Belief Normalization
```python
def normalize_beliefs(beliefs, epsilon=1e-10):
"""Safe belief normalization."""
beliefs = np.clip(beliefs, epsilon, None)
return beliefs / np.sum(beliefs)
```
## Usage Example
```python
# Setup agent
config = load_config("agent_config.yaml")
agent = setup_active_inference_agent(config)
# Run simulation
environment = setup_environment()
observation = environment.reset()
for step in range(max_steps):
# Agent step
action = agent.step(observation)
# Environment step
observation, reward, done, info = environment.step(action)
# Logging and visualization
log_step(step, agent, observation, reward)
visualize_state(agent, environment)
if done:
break
```
## References
- [[knowledge_base/cognitive/active_inference|Active Inference Theory]]
- [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
- [[knowledge_base/mathematics/variational_methods|Variational Methods]]
- [[examples/active_inference_basic|Basic Example]]