зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			362 строки
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			362 строки
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Implementing Active Inference Agents
 | |
| type: guide
 | |
| status: stable
 | |
| created: 2024-02-07
 | |
| tags:
 | |
|   - active_inference
 | |
|   - implementation
 | |
|   - guide
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[knowledge_base/cognitive/active_inference]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[knowledge_base/mathematics/free_energy_theory]]
 | |
|       - [[knowledge_base/agents/GenericPOMDP/README]]
 | |
| ---
 | |
| 
 | |
| # Implementing Active Inference Agents
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide provides a comprehensive approach to implementing active inference agents, from basic principles to advanced features. We'll cover the theoretical foundations, mathematical implementations, and practical considerations.
 | |
| 
 | |
| ## Core Components
 | |
| 
 | |
| ### 1. Generative Model
 | |
| ```python
 | |
| class GenerativeModel:
 | |
|     """
 | |
|     Generative model for active inference agent.
 | |
|     
 | |
|     Implements:
 | |
|     - State transition model P(s_t | s_t-1, a_t)
 | |
|     - Observation model P(o_t | s_t)
 | |
|     - Prior preferences P(s_t)
 | |
|     """
 | |
|     
 | |
|     def __init__(self, config):
 | |
|         self.state_dim = config.state_dim
 | |
|         self.obs_dim = config.obs_dim
 | |
|         self.action_dim = config.action_dim
 | |
|         
 | |
|         # Initialize model parameters
 | |
|         self.transition_matrix = initialize_transitions()
 | |
|         self.observation_matrix = initialize_observations()
 | |
|         self.preferences = initialize_preferences()
 | |
|         
 | |
|     def state_transition(self, state, action):
 | |
|         """Compute state transition probability."""
 | |
|         return compute_transition_prob(
 | |
|             state, action, self.transition_matrix
 | |
|         )
 | |
|         
 | |
|     def observation_likelihood(self, state):
 | |
|         """Compute observation likelihood."""
 | |
|         return compute_observation_prob(
 | |
|             state, self.observation_matrix
 | |
|         )
 | |
|         
 | |
|     def prior_preference(self, state):
 | |
|         """Compute prior preference."""
 | |
|         return compute_preference(state, self.preferences)
 | |
| ```
 | |
| 
 | |
| ### 2. Variational Inference
 | |
| ```python
 | |
| class VariationalInference:
 | |
|     """
 | |
|     Implements variational inference for belief updating.
 | |
|     """
 | |
|     
 | |
|     def __init__(self, model):
 | |
|         self.model = model
 | |
|         self.learning_rate = 0.1
 | |
|         
 | |
|     def update_beliefs(self, beliefs, observation):
 | |
|         """Update beliefs using variational inference."""
 | |
|         # Compute free energy gradients
 | |
|         gradients = compute_free_energy_gradients(
 | |
|             beliefs, observation, self.model
 | |
|         )
 | |
|         
 | |
|         # Update beliefs using gradient descent
 | |
|         updated_beliefs = beliefs - self.learning_rate * gradients
 | |
|         
 | |
|         # Normalize beliefs
 | |
|         return normalize_distribution(updated_beliefs)
 | |
| ```
 | |
| 
 | |
| ### 3. Policy Selection
 | |
| ```python
 | |
| class PolicySelection:
 | |
|     """
 | |
|     Policy selection using expected free energy.
 | |
|     """
 | |
|     
 | |
|     def __init__(self, model):
 | |
|         self.model = model
 | |
|         self.temperature = 1.0
 | |
|         
 | |
|     def evaluate_policies(self, beliefs, policies):
 | |
|         """Evaluate policies using expected free energy."""
 | |
|         G = np.zeros(len(policies))
 | |
|         
 | |
|         for i, policy in enumerate(policies):
 | |
|             # Compute expected free energy components
 | |
|             pragmatic_value = compute_pragmatic_value(
 | |
|                 beliefs, policy, self.model
 | |
|             )
 | |
|             epistemic_value = compute_epistemic_value(
 | |
|                 beliefs, policy, self.model
 | |
|             )
 | |
|             
 | |
|             G[i] = pragmatic_value + epistemic_value
 | |
|             
 | |
|         return G
 | |
|         
 | |
|     def select_action(self, beliefs):
 | |
|         """Select action using softmax policy selection."""
 | |
|         policies = generate_policies()
 | |
|         G = self.evaluate_policies(beliefs, policies)
 | |
|         
 | |
|         # Softmax policy selection
 | |
|         probabilities = softmax(G / self.temperature)
 | |
|         return sample_action(probabilities, policies)
 | |
| ```
 | |
| 
 | |
| ## Implementation Steps
 | |
| 
 | |
| ### 1. Basic Setup
 | |
| ```python
 | |
| def setup_active_inference_agent(config):
 | |
|     """Setup basic active inference agent."""
 | |
|     # Create generative model
 | |
|     model = GenerativeModel(config)
 | |
|     
 | |
|     # Setup inference
 | |
|     inference = VariationalInference(model)
 | |
|     
 | |
|     # Setup policy selection
 | |
|     policy = PolicySelection(model)
 | |
|     
 | |
|     return ActiveInferenceAgent(model, inference, policy)
 | |
| ```
 | |
| 
 | |
| ### 2. Main Agent Class
 | |
| ```python
 | |
| class ActiveInferenceAgent:
 | |
|     """
 | |
|     Complete active inference agent implementation.
 | |
|     """
 | |
|     
 | |
|     def __init__(self, model, inference, policy):
 | |
|         self.model = model
 | |
|         self.inference = inference
 | |
|         self.policy = policy
 | |
|         
 | |
|         # Initialize beliefs
 | |
|         self.beliefs = initialize_beliefs(model.state_dim)
 | |
|         
 | |
|     def step(self, observation):
 | |
|         """Single step of perception-action cycle."""
 | |
|         # 1. Update beliefs
 | |
|         self.beliefs = self.inference.update_beliefs(
 | |
|             self.beliefs, observation
 | |
|         )
 | |
|         
 | |
|         # 2. Select action
 | |
|         action = self.policy.select_action(self.beliefs)
 | |
|         
 | |
|         # 3. Execute action
 | |
|         return action
 | |
| ```
 | |
| 
 | |
| ## Advanced Features
 | |
| 
 | |
| ### 1. Hierarchical Processing
 | |
| ```python
 | |
| class HierarchicalAgent:
 | |
|     """
 | |
|     Hierarchical active inference implementation.
 | |
|     """
 | |
|     
 | |
|     def __init__(self, level_configs):
 | |
|         self.levels = [
 | |
|             ActiveInferenceAgent(config)
 | |
|             for config in level_configs
 | |
|         ]
 | |
|         
 | |
|     def update(self, observation):
 | |
|         """Update all levels."""
 | |
|         for level in self.levels:
 | |
|             prediction = level.step(observation)
 | |
|             observation = prediction  # Pass prediction as observation
 | |
| ```
 | |
| 
 | |
| ### 2. Memory Integration
 | |
| ```python
 | |
| class MemoryAugmentedAgent:
 | |
|     """
 | |
|     Agent with memory integration.
 | |
|     """
 | |
|     
 | |
|     def __init__(self, config):
 | |
|         super().__init__(config)
 | |
|         self.memory = EpisodicMemory(config.memory_size)
 | |
|         
 | |
|     def step(self, observation):
 | |
|         # Integrate memory into belief updating
 | |
|         memory_state = self.memory.retrieve(self.beliefs)
 | |
|         augmented_beliefs = integrate_memory(
 | |
|             self.beliefs, memory_state
 | |
|         )
 | |
|         
 | |
|         # Standard active inference step
 | |
|         action = super().step(observation)
 | |
|         
 | |
|         # Update memory
 | |
|         self.memory.store(self.beliefs, action, observation)
 | |
|         return action
 | |
| ```
 | |
| 
 | |
| ## Configuration Examples
 | |
| 
 | |
| ### Basic Configuration
 | |
| ```yaml
 | |
| agent_config:
 | |
|   state_dim: 10
 | |
|   obs_dim: 5
 | |
|   action_dim: 3
 | |
|   
 | |
|   learning:
 | |
|     learning_rate: 0.1
 | |
|     temperature: 1.0
 | |
|     
 | |
|   model:
 | |
|     hidden_dims: [64, 32]
 | |
|     activation: "relu"
 | |
| ```
 | |
| 
 | |
| ### Hierarchical Configuration
 | |
| ```yaml
 | |
| hierarchical_config:
 | |
|   levels:
 | |
|     - state_dim: 20
 | |
|       temporal_scale: 1
 | |
|     - state_dim: 10
 | |
|       temporal_scale: 5
 | |
|     - state_dim: 5
 | |
|       temporal_scale: 10
 | |
| ```
 | |
| 
 | |
| ## Testing and Validation
 | |
| 
 | |
| ### 1. Unit Tests
 | |
| ```python
 | |
| def test_belief_updating():
 | |
|     """Test belief updating mechanism."""
 | |
|     agent = setup_test_agent()
 | |
|     initial_beliefs = agent.beliefs.copy()
 | |
|     
 | |
|     observation = generate_test_observation()
 | |
|     agent.step(observation)
 | |
|     
 | |
|     assert np.all(agent.beliefs != initial_beliefs)
 | |
|     assert is_normalized(agent.beliefs)
 | |
| ```
 | |
| 
 | |
| ### 2. Integration Tests
 | |
| ```python
 | |
| def test_complete_cycle():
 | |
|     """Test complete perception-action cycle."""
 | |
|     agent = setup_test_agent()
 | |
|     environment = setup_test_environment()
 | |
|     
 | |
|     observation = environment.reset()
 | |
|     for _ in range(100):
 | |
|         action = agent.step(observation)
 | |
|         observation, reward, done, _ = environment.step(action)
 | |
|         
 | |
|         assert is_valid_action(action)
 | |
|         if done:
 | |
|             break
 | |
| ```
 | |
| 
 | |
| ## Performance Optimization
 | |
| 
 | |
| ### 1. Efficient Computation
 | |
| ```python
 | |
| @numba.jit(nopython=True)
 | |
| def compute_free_energy_gradients(beliefs, observation, model):
 | |
|     """Optimized gradient computation."""
 | |
|     # Efficient implementation
 | |
|     pass
 | |
| ```
 | |
| 
 | |
| ### 2. Parallel Processing
 | |
| ```python
 | |
| class ParallelPolicyEvaluation:
 | |
|     """Parallel policy evaluation."""
 | |
|     
 | |
|     def evaluate_policies(self, beliefs, policies):
 | |
|         with concurrent.futures.ProcessPoolExecutor() as executor:
 | |
|             G = list(executor.map(
 | |
|                 self._evaluate_single_policy,
 | |
|                 [(beliefs, p) for p in policies]
 | |
|             ))
 | |
|         return np.array(G)
 | |
| ```
 | |
| 
 | |
| ## Common Issues and Solutions
 | |
| 
 | |
| ### 1. Numerical Stability
 | |
| ```python
 | |
| def stable_softmax(x):
 | |
|     """Numerically stable softmax implementation."""
 | |
|     x = x - np.max(x)  # Subtract maximum for stability
 | |
|     exp_x = np.exp(x)
 | |
|     return exp_x / np.sum(exp_x)
 | |
| ```
 | |
| 
 | |
| ### 2. Belief Normalization
 | |
| ```python
 | |
| def normalize_beliefs(beliefs, epsilon=1e-10):
 | |
|     """Safe belief normalization."""
 | |
|     beliefs = np.clip(beliefs, epsilon, None)
 | |
|     return beliefs / np.sum(beliefs)
 | |
| ```
 | |
| 
 | |
| ## Usage Example
 | |
| 
 | |
| ```python
 | |
| # Setup agent
 | |
| config = load_config("agent_config.yaml")
 | |
| agent = setup_active_inference_agent(config)
 | |
| 
 | |
| # Run simulation
 | |
| environment = setup_environment()
 | |
| observation = environment.reset()
 | |
| 
 | |
| for step in range(max_steps):
 | |
|     # Agent step
 | |
|     action = agent.step(observation)
 | |
|     
 | |
|     # Environment step
 | |
|     observation, reward, done, info = environment.step(action)
 | |
|     
 | |
|     # Logging and visualization
 | |
|     log_step(step, agent, observation, reward)
 | |
|     visualize_state(agent, environment)
 | |
|     
 | |
|     if done:
 | |
|         break
 | |
| ```
 | |
| 
 | |
| ## References
 | |
| 
 | |
| - [[knowledge_base/cognitive/active_inference|Active Inference Theory]]
 | |
| - [[knowledge_base/mathematics/free_energy_theory|Free Energy Theory]]
 | |
| - [[knowledge_base/mathematics/variational_methods|Variational Methods]]
 | |
| - [[examples/active_inference_basic|Basic Example]]  | 
