cognitive/docs/guides/implementation/predictive_network.md
Daniel Ari Friedman 7ca29024d8 Updates
2025-02-12 13:23:51 -08:00

293 строки
7.7 KiB
Markdown

---
title: Predictive Network Implementation
type: implementation_guide
status: stable
created: 2024-02-12
tags:
- implementation
- predictive-processing
- neural-networks
semantic_relations:
- type: implements
links: [[../../learning_paths/predictive_processing]]
- type: relates
links:
- [[error_propagation]]
- [[precision_mechanisms]]
---
# Predictive Network Implementation
## Overview
This guide provides a detailed implementation of a basic predictive processing network, focusing on the core mechanisms of prediction generation and error computation.
## Architecture
### Network Structure
```python
class PredictiveLayer:
def __init__(self, input_size: int, hidden_size: int, output_size: int):
"""Initialize a predictive processing layer.
Args:
input_size: Size of input features
hidden_size: Size of hidden representation
output_size: Size of predictions
"""
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# Initialize weights
self.W_hidden = torch.randn(input_size, hidden_size) * 0.1
self.W_pred = torch.randn(hidden_size, output_size) * 0.1
# Initialize biases
self.b_hidden = torch.zeros(hidden_size)
self.b_pred = torch.zeros(output_size)
# Initialize precision (inverse variance)
self.precision = torch.ones(output_size)
class PredictiveNetwork:
def __init__(self, layer_sizes: List[int]):
"""Initialize hierarchical predictive network.
Args:
layer_sizes: List of layer sizes from bottom to top
"""
self.layers = []
for i in range(len(layer_sizes) - 1):
layer = PredictiveLayer(
input_size=layer_sizes[i],
hidden_size=layer_sizes[i] * 2,
output_size=layer_sizes[i + 1]
)
self.layers.append(layer)
```
### Forward Pass
```python
def forward(self, input_data: torch.Tensor) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Forward pass through the network.
Args:
input_data: Input tensor
Returns:
predictions: List of predictions at each layer
prediction_errors: List of prediction errors
"""
current_input = input_data
predictions = []
prediction_errors = []
# Bottom-up pass
for layer in self.layers:
# Generate prediction
hidden = torch.tanh(current_input @ layer.W_hidden + layer.b_hidden)
prediction = hidden @ layer.W_pred + layer.b_pred
# Compute prediction error
if len(predictions) > 0:
error = current_input - prediction
weighted_error = error * layer.precision
prediction_errors.append(weighted_error)
predictions.append(prediction)
current_input = prediction
return predictions, prediction_errors
```
### Error Computation
```python
def compute_errors(self,
predictions: List[torch.Tensor],
targets: List[torch.Tensor]) -> List[torch.Tensor]:
"""Compute prediction errors at each layer.
Args:
predictions: List of predictions
targets: List of target values
Returns:
errors: List of prediction errors
"""
errors = []
for pred, target, layer in zip(predictions, targets, self.layers):
error = target - pred
weighted_error = error * layer.precision
errors.append(weighted_error)
return errors
```
## Training
### Loss Function
```python
def compute_loss(self,
prediction_errors: List[torch.Tensor],
precision_errors: List[torch.Tensor]) -> torch.Tensor:
"""Compute total loss from prediction and precision errors.
Args:
prediction_errors: List of prediction errors
precision_errors: List of precision estimation errors
Returns:
total_loss: Combined loss value
"""
# Prediction error loss
pred_loss = sum(torch.mean(error ** 2) for error in prediction_errors)
# Precision error loss
prec_loss = sum(torch.mean(error ** 2) for error in precision_errors)
return pred_loss + 0.1 * prec_loss
```
### Update Step
```python
def update_step(self,
loss: torch.Tensor,
learning_rate: float = 0.01):
"""Perform one update step.
Args:
loss: Loss value
learning_rate: Learning rate for updates
"""
# Compute gradients
gradients = torch.autograd.grad(loss, self.parameters())
# Update parameters
with torch.no_grad():
for param, grad in zip(self.parameters(), gradients):
param -= learning_rate * grad
```
## Usage Example
### Basic Training Loop
```python
# Initialize network
layer_sizes = [64, 32, 16] # Example sizes
network = PredictiveNetwork(layer_sizes)
# Training loop
for epoch in range(num_epochs):
for batch in data_loader:
# Forward pass
predictions, errors = network.forward(batch.inputs)
# Compute loss
loss = network.compute_loss(errors, [])
# Update step
network.update_step(loss)
# Log progress
if epoch % 100 == 0:
print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
```
### Prediction Generation
```python
def generate_predictions(self, input_data: torch.Tensor) -> List[torch.Tensor]:
"""Generate predictions for input data.
Args:
input_data: Input tensor
Returns:
predictions: List of predictions at each layer
"""
predictions, _ = self.forward(input_data)
return predictions
```
## Advanced Features
### Precision Estimation
```python
def estimate_precision(self,
errors: List[torch.Tensor],
window_size: int = 100) -> List[torch.Tensor]:
"""Estimate precision based on prediction errors.
Args:
errors: List of prediction errors
window_size: Window size for estimation
Returns:
precisions: Updated precision estimates
"""
precisions = []
for error in errors:
# Compute running variance
var = torch.mean(error ** 2, dim=0)
# Update precision (inverse variance)
precision = 1.0 / (var + 1e-6)
precisions.append(precision)
return precisions
```
### Layer Normalization
```python
def normalize_layer(self,
activations: torch.Tensor,
epsilon: float = 1e-5) -> torch.Tensor:
"""Apply layer normalization.
Args:
activations: Layer activations
epsilon: Small constant for numerical stability
Returns:
normalized: Normalized activations
"""
mean = torch.mean(activations, dim=-1, keepdim=True)
std = torch.std(activations, dim=-1, keepdim=True)
return (activations - mean) / (std + epsilon)
```
## Best Practices
### Initialization
1. Use small random weights
2. Initialize biases to zero
3. Set reasonable precision values
4. Validate layer sizes
### Training
1. Monitor convergence
2. Use appropriate learning rates
3. Implement early stopping
4. Save checkpoints
### Validation
1. Test prediction accuracy
2. Check error distributions
3. Validate precision estimates
4. Monitor layer activities
## Common Issues
### Numerical Stability
1. Use layer normalization
2. Add small constants to divisions
3. Clip gradient values
4. Monitor activation ranges
### Performance
1. Batch processing
2. GPU acceleration
3. Memory management
4. Efficient updates
## Related Documentation
- [[error_propagation]]
- [[precision_mechanisms]]
- [[temporal_models]]