зеркало из
				https://github.com/docxology/cognitive.git
				synced 2025-10-31 21:26:04 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			293 строки
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			293 строки
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| title: Predictive Network Implementation
 | |
| type: implementation_guide
 | |
| status: stable
 | |
| created: 2024-02-12
 | |
| tags:
 | |
|   - implementation
 | |
|   - predictive-processing
 | |
|   - neural-networks
 | |
| semantic_relations:
 | |
|   - type: implements
 | |
|     links: [[../../learning_paths/predictive_processing]]
 | |
|   - type: relates
 | |
|     links:
 | |
|       - [[error_propagation]]
 | |
|       - [[precision_mechanisms]]
 | |
| ---
 | |
| 
 | |
| # Predictive Network Implementation
 | |
| 
 | |
| ## Overview
 | |
| 
 | |
| This guide provides a detailed implementation of a basic predictive processing network, focusing on the core mechanisms of prediction generation and error computation.
 | |
| 
 | |
| ## Architecture
 | |
| 
 | |
| ### Network Structure
 | |
| ```python
 | |
| class PredictiveLayer:
 | |
|     def __init__(self, input_size: int, hidden_size: int, output_size: int):
 | |
|         """Initialize a predictive processing layer.
 | |
|         
 | |
|         Args:
 | |
|             input_size: Size of input features
 | |
|             hidden_size: Size of hidden representation
 | |
|             output_size: Size of predictions
 | |
|         """
 | |
|         self.input_size = input_size
 | |
|         self.hidden_size = hidden_size
 | |
|         self.output_size = output_size
 | |
|         
 | |
|         # Initialize weights
 | |
|         self.W_hidden = torch.randn(input_size, hidden_size) * 0.1
 | |
|         self.W_pred = torch.randn(hidden_size, output_size) * 0.1
 | |
|         
 | |
|         # Initialize biases
 | |
|         self.b_hidden = torch.zeros(hidden_size)
 | |
|         self.b_pred = torch.zeros(output_size)
 | |
|         
 | |
|         # Initialize precision (inverse variance)
 | |
|         self.precision = torch.ones(output_size)
 | |
| 
 | |
| class PredictiveNetwork:
 | |
|     def __init__(self, layer_sizes: List[int]):
 | |
|         """Initialize hierarchical predictive network.
 | |
|         
 | |
|         Args:
 | |
|             layer_sizes: List of layer sizes from bottom to top
 | |
|         """
 | |
|         self.layers = []
 | |
|         for i in range(len(layer_sizes) - 1):
 | |
|             layer = PredictiveLayer(
 | |
|                 input_size=layer_sizes[i],
 | |
|                 hidden_size=layer_sizes[i] * 2,
 | |
|                 output_size=layer_sizes[i + 1]
 | |
|             )
 | |
|             self.layers.append(layer)
 | |
| ```
 | |
| 
 | |
| ### Forward Pass
 | |
| ```python
 | |
| def forward(self, input_data: torch.Tensor) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
 | |
|     """Forward pass through the network.
 | |
|     
 | |
|     Args:
 | |
|         input_data: Input tensor
 | |
|         
 | |
|     Returns:
 | |
|         predictions: List of predictions at each layer
 | |
|         prediction_errors: List of prediction errors
 | |
|     """
 | |
|     current_input = input_data
 | |
|     predictions = []
 | |
|     prediction_errors = []
 | |
|     
 | |
|     # Bottom-up pass
 | |
|     for layer in self.layers:
 | |
|         # Generate prediction
 | |
|         hidden = torch.tanh(current_input @ layer.W_hidden + layer.b_hidden)
 | |
|         prediction = hidden @ layer.W_pred + layer.b_pred
 | |
|         
 | |
|         # Compute prediction error
 | |
|         if len(predictions) > 0:
 | |
|             error = current_input - prediction
 | |
|             weighted_error = error * layer.precision
 | |
|             prediction_errors.append(weighted_error)
 | |
|         
 | |
|         predictions.append(prediction)
 | |
|         current_input = prediction
 | |
|     
 | |
|     return predictions, prediction_errors
 | |
| ```
 | |
| 
 | |
| ### Error Computation
 | |
| ```python
 | |
| def compute_errors(self, 
 | |
|                   predictions: List[torch.Tensor], 
 | |
|                   targets: List[torch.Tensor]) -> List[torch.Tensor]:
 | |
|     """Compute prediction errors at each layer.
 | |
|     
 | |
|     Args:
 | |
|         predictions: List of predictions
 | |
|         targets: List of target values
 | |
|         
 | |
|     Returns:
 | |
|         errors: List of prediction errors
 | |
|     """
 | |
|     errors = []
 | |
|     for pred, target, layer in zip(predictions, targets, self.layers):
 | |
|         error = target - pred
 | |
|         weighted_error = error * layer.precision
 | |
|         errors.append(weighted_error)
 | |
|     return errors
 | |
| ```
 | |
| 
 | |
| ## Training
 | |
| 
 | |
| ### Loss Function
 | |
| ```python
 | |
| def compute_loss(self, 
 | |
|                 prediction_errors: List[torch.Tensor], 
 | |
|                 precision_errors: List[torch.Tensor]) -> torch.Tensor:
 | |
|     """Compute total loss from prediction and precision errors.
 | |
|     
 | |
|     Args:
 | |
|         prediction_errors: List of prediction errors
 | |
|         precision_errors: List of precision estimation errors
 | |
|         
 | |
|     Returns:
 | |
|         total_loss: Combined loss value
 | |
|     """
 | |
|     # Prediction error loss
 | |
|     pred_loss = sum(torch.mean(error ** 2) for error in prediction_errors)
 | |
|     
 | |
|     # Precision error loss
 | |
|     prec_loss = sum(torch.mean(error ** 2) for error in precision_errors)
 | |
|     
 | |
|     return pred_loss + 0.1 * prec_loss
 | |
| ```
 | |
| 
 | |
| ### Update Step
 | |
| ```python
 | |
| def update_step(self, 
 | |
|                 loss: torch.Tensor,
 | |
|                 learning_rate: float = 0.01):
 | |
|     """Perform one update step.
 | |
|     
 | |
|     Args:
 | |
|         loss: Loss value
 | |
|         learning_rate: Learning rate for updates
 | |
|     """
 | |
|     # Compute gradients
 | |
|     gradients = torch.autograd.grad(loss, self.parameters())
 | |
|     
 | |
|     # Update parameters
 | |
|     with torch.no_grad():
 | |
|         for param, grad in zip(self.parameters(), gradients):
 | |
|             param -= learning_rate * grad
 | |
| ```
 | |
| 
 | |
| ## Usage Example
 | |
| 
 | |
| ### Basic Training Loop
 | |
| ```python
 | |
| # Initialize network
 | |
| layer_sizes = [64, 32, 16]  # Example sizes
 | |
| network = PredictiveNetwork(layer_sizes)
 | |
| 
 | |
| # Training loop
 | |
| for epoch in range(num_epochs):
 | |
|     for batch in data_loader:
 | |
|         # Forward pass
 | |
|         predictions, errors = network.forward(batch.inputs)
 | |
|         
 | |
|         # Compute loss
 | |
|         loss = network.compute_loss(errors, [])
 | |
|         
 | |
|         # Update step
 | |
|         network.update_step(loss)
 | |
|         
 | |
|         # Log progress
 | |
|         if epoch % 100 == 0:
 | |
|             print(f"Epoch {epoch}, Loss: {loss.item():.4f}")
 | |
| ```
 | |
| 
 | |
| ### Prediction Generation
 | |
| ```python
 | |
| def generate_predictions(self, input_data: torch.Tensor) -> List[torch.Tensor]:
 | |
|     """Generate predictions for input data.
 | |
|     
 | |
|     Args:
 | |
|         input_data: Input tensor
 | |
|         
 | |
|     Returns:
 | |
|         predictions: List of predictions at each layer
 | |
|     """
 | |
|     predictions, _ = self.forward(input_data)
 | |
|     return predictions
 | |
| ```
 | |
| 
 | |
| ## Advanced Features
 | |
| 
 | |
| ### Precision Estimation
 | |
| ```python
 | |
| def estimate_precision(self, 
 | |
|                       errors: List[torch.Tensor],
 | |
|                       window_size: int = 100) -> List[torch.Tensor]:
 | |
|     """Estimate precision based on prediction errors.
 | |
|     
 | |
|     Args:
 | |
|         errors: List of prediction errors
 | |
|         window_size: Window size for estimation
 | |
|         
 | |
|     Returns:
 | |
|         precisions: Updated precision estimates
 | |
|     """
 | |
|     precisions = []
 | |
|     for error in errors:
 | |
|         # Compute running variance
 | |
|         var = torch.mean(error ** 2, dim=0)
 | |
|         # Update precision (inverse variance)
 | |
|         precision = 1.0 / (var + 1e-6)
 | |
|         precisions.append(precision)
 | |
|     return precisions
 | |
| ```
 | |
| 
 | |
| ### Layer Normalization
 | |
| ```python
 | |
| def normalize_layer(self, 
 | |
|                    activations: torch.Tensor,
 | |
|                    epsilon: float = 1e-5) -> torch.Tensor:
 | |
|     """Apply layer normalization.
 | |
|     
 | |
|     Args:
 | |
|         activations: Layer activations
 | |
|         epsilon: Small constant for numerical stability
 | |
|         
 | |
|     Returns:
 | |
|         normalized: Normalized activations
 | |
|     """
 | |
|     mean = torch.mean(activations, dim=-1, keepdim=True)
 | |
|     std = torch.std(activations, dim=-1, keepdim=True)
 | |
|     return (activations - mean) / (std + epsilon)
 | |
| ```
 | |
| 
 | |
| ## Best Practices
 | |
| 
 | |
| ### Initialization
 | |
| 1. Use small random weights
 | |
| 2. Initialize biases to zero
 | |
| 3. Set reasonable precision values
 | |
| 4. Validate layer sizes
 | |
| 
 | |
| ### Training
 | |
| 1. Monitor convergence
 | |
| 2. Use appropriate learning rates
 | |
| 3. Implement early stopping
 | |
| 4. Save checkpoints
 | |
| 
 | |
| ### Validation
 | |
| 1. Test prediction accuracy
 | |
| 2. Check error distributions
 | |
| 3. Validate precision estimates
 | |
| 4. Monitor layer activities
 | |
| 
 | |
| ## Common Issues
 | |
| 
 | |
| ### Numerical Stability
 | |
| 1. Use layer normalization
 | |
| 2. Add small constants to divisions
 | |
| 3. Clip gradient values
 | |
| 4. Monitor activation ranges
 | |
| 
 | |
| ### Performance
 | |
| 1. Batch processing
 | |
| 2. GPU acceleration
 | |
| 3. Memory management
 | |
| 4. Efficient updates
 | |
| 
 | |
| ## Related Documentation
 | |
| - [[error_propagation]]
 | |
| - [[precision_mechanisms]]
 | |
| - [[temporal_models]]  | 
